Changing basal conditions during the speed-up of Jakobshavn Isbræ, Greenland

Published: Jun 1, 2013 by The PISM Authors

   
Title Changing basal conditions during the speed-up of Jakobshavn Isbræ, Greenland
Authors Marijke Habermann, Martin Truffer, and David Maxwell, University of Alaska Fairbanks
Venue EGU 2013

Here, basal conditions for different years before and after the break-up of the tongue are inferred from surface velocity measurements to investigate the changes and to compare them with parameterizations of basal conditions commonly used in ice-sheet models. All inversions reproduce the overall pattern of observed surface velocities, which shows that, in general, our data and model choices are capable of reproducing the observations by only adjusting basal yield stress. In the lower 5 km of the glacier a clear trend from higher to lower basal yield stress values is visible.

Share

Latest news

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod, www.palmod.de), which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.

AWI PostDoc: Antarctic Ice Sheets in warming climates

Dr. Lohmann’s group at AWI is seeking a postdoc to work with PISM and the multi-scale Earth system model AWI-ESM. See