Resolution-dependent performance of grounding line motion in a shallow model compared with a full-Stokes model according to the MISMIP3d intercomparison

Published: May 1, 2014 by The PISM Authors

   
Title Resolution-dependent performance of grounding line motion in a shallow model compared with a full-Stokes model according to the MISMIP3d intercomparison
Authors J. Feldmann, T. Albrecht, C. Khroulev, F. Pattyn, and A. Levermann
Venue J. Glaciol.

By using MISMIP3d simulations across a range of resolutions, this paper shows that the SIA+SSA hybrid stress balance in PISM can model grounding line motion in a perturbed ice-sheet–shelf system. The key improvements, all included in pism0.6, are: linear interpolation of the grounding line, locally-interpolated basal friction, and an improved driving-stress computation across the grounding line. The reversibility of the grounding line, after a local perturbation of basal resistance comes and goes, is captured by the model even at medium and low horizontal resolutions (> 10 km). The transient model response is qualitatively-similar to that of higher-order models, though with higher sensitivity to perturbations on very short timescales. Our findings support the application of PISM to the Antarctic ice sheet from regional up to continental scales and even at relatively-low spatial resolutions.

Share

Latest news

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod, www.palmod.de), which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.

AWI PostDoc: Antarctic Ice Sheets in warming climates

Dr. Lohmann’s group at AWI is seeking a postdoc to work with PISM and the multi-scale Earth system model AWI-ESM. See