Role of model initialization for projections of 21st-century Greenland ice sheet mass loss

Published: Nov 1, 2014 by The PISM Authors

Three cross sections (north, center, south) through the modeled initial states, at a 5 km resolution.

Three cross sections (north, center, south) through the modeled initial states, at a 5 km resolution.

   
Title Role of model initialization for projections of 21st-century Greenland ice sheet mass loss
Authors G. Adalgeirsdottir and 6 others
Venue J. Glaciol.

This paper assesses the sensitivity of projections of Greenland ice sheet contribution to 21st-century sea-level rise to the model initial state. Four initialization methods are applied using PISM. The simulated contribution to sea-level rise by 2100 ranges from an equivalent of 0.2 to 6.8 cm. The largest uncertainties arise from different formulations of the regional climate models (0.8–3.9 cm) and applied scenarios (0.65–1.9 cm), but an important source of uncertainty is the initialization method (0.1–0.8 cm). These model simulations do not account for the recently observed acceleration of outlet glaciers and consequent thinning rates, ocean forcing, or the feedback occurring between ice-sheet elevation changes and climate forcing. These results should be considered a lower limit of Greenland ice sheet contributions to sea-level rise, until such processes have been integrated into large-scale ice-sheet models.

Share

Latest news

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod, www.palmod.de), which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.

AWI PostDoc: Antarctic Ice Sheets in warming climates

Dr. Lohmann’s group at AWI is seeking a postdoc to work with PISM and the multi-scale Earth system model AWI-ESM. See