Coupled ice sheet--climate modeling under glacial and pre-industrial boundary conditions

Published: Jan 1, 2015 by The PISM Authors

Title Coupled ice sheet–climate modeling under glacial and pre-industrial boundary conditions
Authors F. Ziemen and others
Venue The Climate of the Past

Modeling Northern Hemisphere glacial conditions using general circulation models (GCMs) in quasi-equilibrium with prescribed ice sheets can lead to inconsistencies between the modeled climate and ice sheets. To avoid this problem, this paper models the ice sheets explicitly, giving the first results from coupled ice sheet–climate simulations for pre-industrial times and the Last Glacial Maximum. They use the atmosphere–ocean–vegetation GCM ECHAM5/MPIOM/LPJ bidirectionally-coupled with a modified version of PISM 0.3 on a 20 km grid covering the Northern Hemisphere. The model system adequately represents large, non-linear climate perturbations, and the results agree reasonably well with reconstructions and observations. A large part of the drainage of the ice sheets occurs in ice streams which show recurring surges as internal oscillations. The Hudson Strait Ice Stream surges with an ice volume equivalent to about 5 m sea level and a recurrence interval of about 7000 yr, in agreement with basic expectations for Heinrich events.


Latest news

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod,, which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.

AWI PostDoc: Antarctic Ice Sheets in warming climates

Dr. Lohmann’s group at AWI is seeking a postdoc to work with PISM and the multi-scale Earth system model AWI-ESM. See