

PISM (Parallel Ice Sheet Model)

Current status and future plans

Constantine Khroulev, Ed Bueler, Andy Aschwanden

University of Alaska Fairbanks

CESM LIWG Meeting, February 2012

PISM in 3 slides (1 of 3)

User's point of view

- runs on Linux, Unix, and Mac OS X: from workstations to supercomputers
- stable versions are released once a year
 - source code or a Debian/Ubuntu package
 - website: www.pism-docs.org
- comprehensive User's Manual (PDF, 120+ pages)

designed with usability in mind

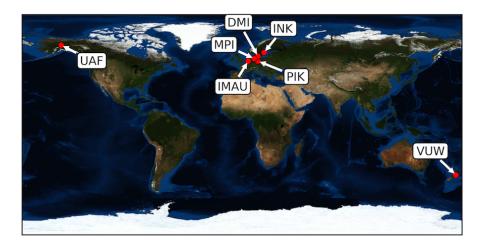
PISM in three slides 2 / 15

PISM in 3 slides (2 of 3)

Power user's point of view

- modular and extensible
- documented source code (doxygen)
- everything is parallel (PETSc and MPI)
 - whole Greenland at 2 km resolution
- open source (GPL, hosted on github.com)
- well-tested physics
 - shallow hybrid
 - enthalpy method

PISM in three slides 3 / 15


PISM in 3 slides (3 of 3)

Development point of view

- supported by the NASA Modeling, Analysis and Prediction grant NNX09AJ38G through 2013
- ► since April 2011 PISM is developed jointly at UAF and the Potsdam Institute for Climate Impact Research (PIK)

PISM in three slides 4 / 15

What do people do with PISM?

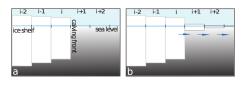
PISM in three slides 5 / 15

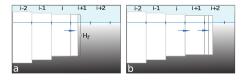
People publish papers (with pretty pictures)

During the past year *nine* PISM-related papers were published (or are about to appear):

- two papers by PISM users outside of UAF and PIK
 - ▶ **Solgaard et al** (2011) Snapshots of the Greenland ice sheet configuration in the Pliocene to early Pleistocene
 - ▶ van Pelt et al (2012) Numerical simulations of cyclic behaviour in the Parallel Ice Sheet Model (PISM)
- ▶ six papers from the PIK group
 - one description paper
 - three modeling
 - two applications
- ► **Aschwanden et al** (2012) An enthalpy formulation for glaciers and ice sheets

Current status 6 / 15

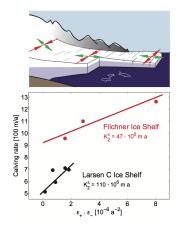

We feature one project a month



Current status 7 / 15

PISM-PIK merge

Subgrid-scale motion of the calving front


- avoids artificial thinning
- better modeling of the location of the front
- allows for advancing shelves

Albrecht et al (2011) Parameterization for subgrid-scale motion of ice-shelf calving fronts. The Cryosphere 5 pp. 35-44.

Current status 8 / 15

PISM-PIK merge

First-order calving law

calving rate proportional to spreading rates in both eigen-directions:

$$C = K_2^{\pm} \cdot \dot{\epsilon}_+ \cdot \dot{\epsilon}_-$$

- has one scalar parameter
- allows for ice shelf retreat

Levermann et al (2011) *Kinematic first-order calving law implies potential for abrupt ice-shelf retreat.* The Cryosphere Discussions 5 (5) pp. 2699–2722.

Current status 9 / 15

PIK application

Dynamic equilibrium simulation of the Antarctic ice sheet

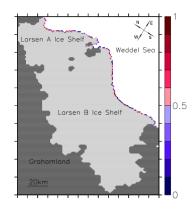


Fig. 7. Snapshot of a realistic steady state model simulation of Larsen A and B Ice shelf (light gray) with grounded parts (dark gray) and the ice-free ocean (white). Values of R at the propagating ice shelf front are colored.

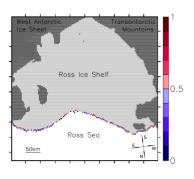


Fig. 8. Snapshot of a realistic steady state model simulation of Ross Ice shelf (light gray) with grounded parts (dark gray) and the ice-free ocean (white). Values of R at the propagating ice shelf front are colored.

tive time step occurs for a single pair of cells, which is located probably at the ice front with distance from confinements, whereas along the rest of the ice-shelf front velocities

Martin et al (2011) The Potsdam Parallel Ice Sheet Model (PISM-PIK) Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet. The Cryosphere 5 pp. 727–740.

Current status 10 / 15

PIK project

Fracture field for large-scale ice dynamics

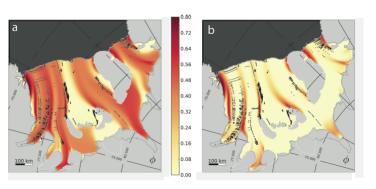


Fig. 7. Steady-state fracture density for Filchner–Ronne simulation with (a) fracture density boundary condition for the inlets $\phi_0=0.4$ and (b) healing rate, $\gamma_h=0.1$, and $\psi_h=\dot{\epsilon}_1-2\times 10^{-10}\,{\rm s}^{-1}$, but with $\phi_0=0$. Parameters for fracture initiation are chosen as $\sigma_{cr}=70\,{\rm kPa}$ and $\gamma=0.3$ (cf. Fig. 4b).

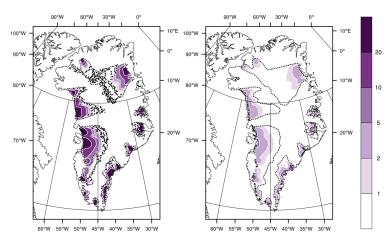
step toward fracture-based calving

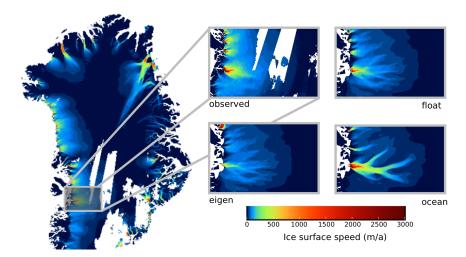
Albrecht et al (2012) Fracture field for large-scale ice dynamics. Journal of Glaciology 58 (207) pp. 165-176.

Current status 11 / 15

UAF project

Enthalpy model



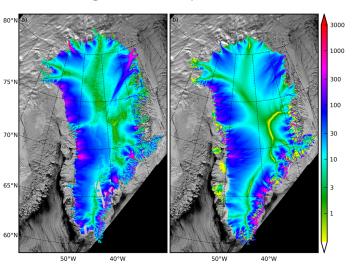

Figure 8. Basal melt rate for the ENTH run (left) and the TEMP run (right). Values are in millimeters per year. The dashed line is the cold-temperate transition surface.

Aschwanden et al (2012) An enthalpy formulation for glaciers and ice sheets. Journal of Glaciology, to appear

Current status 12 / 15

UAF project

PISM as a regional model



Daniella DellaGiustina (2011), Regional modeling of Greenland's outlet glaciers with the Parallel Ice Sheet Model, M.S. Computational Physics thesis, UAF

Current status 13 / 15

UAF project

Validation using InSAR surface speed

Left: InSAR surface speed in meters per year (Joughin, 2010)
Right: PISM simulated surface speed

- no inversion
- small number of parameters
- constant climate spin-up
- 2km grid
- Aschwanden et al, in prep.

Current status 14 / 15

Future plans

- inverse modeling (lead by David Maxwell and Marijke Habermann)
 - uses new tools (written in Python)
 - shares code with PISM
 - well under way
- basal hydrology model (Ed Bueler and Ward van Pelt)
- ▶ Blatter stress balance solver*
- better coupling
- better transport/advection algorithm

Future plans 15 / 15

^{*} See **Brown et al** (2011) Achieving textbook multigrid efficiency for hydrostatic ice sheet flow, submitted to SIAM J. Scientific Computing.