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The Pretend Shallow Shelf Approximation
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Forward problem: Given a bed strength coefficient γ, find ice
velocities (u, v) solving (1). I.e. (u, v) = FSSA(γ).

Inverse problem: Given observed ice velocities (u, v), determine the
corresponding bed strength coefficient γ.



Inverse problem is ill-posed

Problem 1: (u, v) has twice as many degrees of freedom as γ. We
can’t expect any solution at all to exist.

Problem 2: The inverse map F−1SSA is not continuous. An estimate
for the amount of error in (u, v) does not imply an estimate for the
amount of error in γ.

These problems have been addressed in the ice literature by
minimizing

J(γ) = ∫
Ω
∣(u, v) −FSSA(γ)∣2,

typically with steepest descent.
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The forward map is smoothing

4 2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5
u

4 2 0 2 4
0

2

4

6

8

10
gamma



The forward map is smoothing
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The inverse problem I’d really love to solve

Among all parameters γ, find the ‘least featured’ one such that
FSSA(γ) is ‘consistent’ with observation.

For example, minimize
∣∣γ∣∣X

subject to
∣∣FSSA(γ) − (u, v)∣∣Y < δ

where δ is specified in advance and incorporates estimates for both
model and measurement error.



The inverse problem I’d really love to solve

Among all parameters γ, find the ‘least featured’ one such that
FSSA(γ) is ‘consistent’ with observation.

For example, minimize
∣∣γ−γ0∣∣X

subject to
∣∣FSSA(γ) − (u, v)∣∣Y < δ

where δ is specified in advance and incorporates estimates for both
model and measurement error.



Standard approaches to regularization

Tikhonov Regularization:

Minimize
Jν(γ) = J(γ) + ν∣∣γ − γ0∣∣X

where ν is a regularization parameter (TBD).

Iterative Methods:

● Start with an initial estimate γ0 for the bed strength and a
desired misfit level δ.
● Iteratively determine a sequence of search directions {hk}.
● Determine γk+1 = γk + tkhk with tk minimizing t ↦ J(γk + thk).
● Stop at the first iteration k such that J(γk) < δ.
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Why you might believe iterative methods work

For steepest descent,

hk = T∗((uk , vk) − (u, v)),

where (uk , vk) = FSSA(γk) and T = F ′SSA(γk).

• Because FSSA smooths wiggles, so does T.

• Because T smooths wiggles, so does T∗.

• So the search direction is a ’smoothed out’ version of the
residual.

• Other minimization methods based on the gradient (e.g.
nonlinear conjugate gradient method) can be expected to
have this same property.
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Gauss-Newton Method
Method for minimizing nonlinear least-squares problem, e.g.

J(γ) = ∣∣y −FSSA(γ)∣∣2Y .

● At iterate γk, define

Fk(h) = FSSA(γk) +F ′SSA(x)[h] ≈ FSSA(xk + h)

● Determine a search direction hk by minimizing the quadratic
functional

Jk(h) = ∣∣y − Fk(h)∣∣2Y
● Determine γk+1 = γk + tkhk with tk minimizing t ↦ J(γk + thk).

But if the original minimization problem for J is ill-posed, so is the
minimization problem for Jk.

Iteratively Regularized Gauss-Newton:
Determine search directions hk by minimizing

Jk(h) = ∣∣y − Fk(h)∣∣2Y + νk ∣∣h∣∣2X
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Incomplete Gauss Newton

• Start with an initial estimate γ0 for the bed strength and a
desired misfit level δ.

• At iteration γk, determine the current misfit δk, and construct
quadratic functional Jk.

• Use linear conjugate gradient method on Jk to correct a
fraction θ of the remaining misfit δk − δ.

• This determines a search direction hk, now minimize
t ↦ J(γk + thk).

• Manage θ if the resulting misfit decrease is poor.



What’s good

• The extra information required for regularization is very
tangible: an initial estimate γ0 and an estimate for the error δ
in the measurements and model.

• The method is comparatively fast:
• Nothing is ever optimized completely.
• Linesearches (i.e. determining step tk along hk) often

terminate after one nonlinear function evaluation.
• Linear inverse problems at each iteration are cheap to solve

(linear conjugate gradient method, stopping early).



What’s good



Reconstructions for 2d synthetic data

Reconstruction of basal stress starting with several initial estimates
via steepest descent. (Joughin, MacAyeal, Tulaczyk ’04)

[MacAyeal, 1989], we only evaluate these statistics for the
main body of the ice stream (i.e., area moving faster than
300 m/yr).
[24] Figure 3 shows the difference between the known

and the inverted tb for the viscous bed experiments.
Statistics (mI!T, sI!T, r) for the initial-condition experiments
are shown in Table 1 for all three bed models. As expected,
the best result is achieved when ‘‘truth’’ is used as the initial
condition. Some small differences still exist, which likely
are caused by interpolation error. In contrast, both ‘‘truth
plus noise’’ and ‘‘constant value’’ give signficantly poorer

results (see Figure 3) in terms of matching the several-
kilometer-scale structure of the basal shear stress, but yield
reasonable values for the mean bed resistance. In particular,
Figure 3c illustrates that the ‘‘truth plus noise’’ solution has
a high degree of erroneous spatial structure, which is likely
introduced by the structure of the noise in the intial
condition. Even with the poor quality of this inversion, a
good fit is achieved in terms of the velocity misfit, J.
[25] Without a priori knowledge of the basal resistance,

the ‘‘50% of td’’ initial condition provides the best fit. This
is likely because the basal shear stress, at least to some

Figure 2. Synthetic data for inversion experiments. Forward model inputs (a) bed topography, zb,
(b) driving stress, td, (c) basal shear stress, tb, and (d) forward model output velocity. The hypothetical
ice stream is 60 km wide at the top and 20 km wide at the bottom.

Figure 3. (a) Basal shear stress, tb used in forward model for initial condition experiments and
differences between tb and viscous bed inversions for (b) ‘‘truth,’’ (c) ‘‘truth plus noise,’’ (d) ‘‘50% of
td,’’ and (e) ‘‘constant value.’’
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Reconstructions for 2d synthetic data

Reconstructions via incomplete Gauss-Newton.



What’s not so good

• For the applicability of adjoints, domain and range need to be
Hilbert spaces. E.g. no L1 or L∞ norms allowed.

• You still need to fully solve a number of nonlinear forward
problems.

• I don’t know how to tell you how to pick δ.

• There’s no proof that any of this works.



A lonely ice stream

40 20 0 20 40
0.0

0.1

0.2

0.3

0.4

0.5
u

40 20 0 20 40
0

2

4

6

8

10
gamma

Ice stream is embedded in a larger sheet of length L varying from
L = 10, to L = 1000.



Iteration counts
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Lonely ice stream reconstructions
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Lonely ice stream reconstructions
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