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Outline: Fast solvers for PDEs subject to inequalities

@ variational inequalities (VIs)
@ nonlinear multigrid for PDEs

@ multigrid for Vs
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example: classical obstacle problem
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o problem. on a domain Q C R?, find the displacement u(x) of a
membrane, with fixed value u = g on 092, above an obstacle 1)(x),
which minimizes elastic (plus some potential) energy

J(v) = / %|VV|2 v
Q

©

shown above: Q a square, ¥(x) a hemisphere
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example: classical obstacle problem

o problem. on a domain Q C R?, find the displacement u(x) of a
membrane, with fixed value u = g on 092, above an obstacle 1)(x),
which minimizes elastic (plus some potential) energy

J(v) = / %|VV|2 v
Q

o shown above: Q a square, 1)(x) a hemisphere
Q. how to solve this as a PDE with boundary conditions?
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example: classical obstacle problem
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o this is constrained optimization over an infinite-dimensional
admissible set

IC:{veH1(Q) . V|, =g and vzw}
o K is a closed and convex subset of the Sobolev space

H'(Q) = {v : /Q|v|2+ IVv|? < oo}
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example: classical obstacle problem
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o the solution defines subsets of Q:
o active set A, = {u =1}
o inactive set R, = {u > ¢}
o free boundary T, = 0R, NQ
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example: classical obstacle problem
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@ a naive strong form would pose the problem in terms of its
solution:

—V2u=f onR,
u=1v onAy
o Poisson equation —V2u = fis “J'(u) = 0" on Ry

o using the solution u to define the set R, on which to solve the PDE
—V?2u = f does not lead to solution algorithms
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example: classical obstacle problem
R,
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u—y>0

Ye2u—f>0
(u—)(~VPu—1£)=0

o the complementarity problem (CP) is a meaningful strong form:

o CP = KKT conditions
o but in co-dimensions
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example: classical obstacle problem
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o the weak form is a variational inequality (V1), which says that J'(u)
points directly into K:

<J’(u),v—u>—/Vu-V(v—u)—f(v—u)zo
Q

forallve K
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VI = weak form

o for problems of optimization type, the VI is the weak form, with
v — u as the test function:

J(u) < J(v) vvek = (J(u),v—u)>0 Vvek
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general variational inequalities

o let K be a closed and convex subset of a Banach space V
o suppose F : K — V' is a continuous operator

o F is generally nonlinear

o F may be defined only on K

o F may not be the derivative of an objective function J
o F=J, alinear operator, in classical obstacle problem

o the general variational inequality VI(F,K) is
(F(u),v—u)>0 forallvek

@ when K is nontrivial the problem VI(F,K) is nonlinear even when
F is a linear operator
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VI = constrained “system of equations”

unconstrained constrained
optimization
oy ) Ry )
equations | find uy ¢ V: findue K cV:
F(uy=0 (F(u,v—u)>0 Yvek

Bueler and Farrell Fast solvers for PDE subject to inequalities 7/41



VI = constrained “system of equations”

unconstrained constrained
optimization
oy ) Ry )
weak form | find u ¢ V: findue K cV:
equations
(F(u),v)=0 VveV | (F(u,v—u)>0 Vvek
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applications of Vs

o elastic contact
o car tires, for example

o pricing of American options
o inequality-constrained Black-Scholes model

o the geometry of glaciers

o first-semester calculus:

u+ min f(x) < f(u)(v—u)>0 Vve]ab]

x€la,b]
] y u
! !
l_ a " b g ' i y b * a F;: u *
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1) variational inequalities (VIs)

o nonlinear multigrid for PDEs
o full approximation scheme (FAS)

3) multigrid for Vs
full approximation scheme constraint decomposition (FASCD)

4) results
classical obstacle problem
advection-diffusion of a concentration
glacier surface elevations



nonlinear 2-mesh scheme

Qh QH

@ consider a nonlinear elliptic PDE problem:
F(u)=1¢

uev=H(Q)

LeV

F :V — V' continuous and one-to-one

for example, the Liouville-Bratu problem: —V2u — eV = f

o discretization gives algebraic system on fine mesh Q”:

(@]
[¢]
o
[¢]

Fh(uh) — Eh
o uh denotes exact (algebraic) solution
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nonlinear 2-mesh scheme

Qh L JoH

o goal: to solve F"(u") = ¢" on Q"
o suppose w" is a not-yet-converged iterate:

M= —F'(wh), |r"| >TOoL

o how can we improve w" without globally linearizing F?
o are there alternatives to Newton’s method?
@ notes:
i) the residual r" = (" — Fh(wh) is computable
ii) the error e =u"— wh is unknown
iii) our equation can be rewritten

Fhu"y — Fh(w"y = r"
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nonlinear 2-mesh scheme

Qf Qf

o updated goal- from iterate w”, to solve
F(u"y — FP(w") = r"
o for F' linear, convert this to the error equation
Fh(eh) = rh
o an approximation solution &" would improve our iterate:

wh «— wh 4+ &h
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nonlinear 2-mesh scheme

Qf o

o updated goal- from iterate w”, to solve
Fh(Uh) o Fh(Wh) — rh
o for F' linear, convert this to the error equation

Fh(eh) — fh

o an approximation solution &" would improve our iterate:

wh «— wh 4+ &h

o but F"is not linear!
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nonlinear 2-mesh scheme

Qf Qf

o updated goal: use a coarser mesh Q' to somehow estimate the
solution u in the nonlinear correction equation

F(uMy — Fh(why = r"

o basic multigrid idea: there are algorithms (smoothers) which
“improve” w” .. .use them a little first . .. then correct from the
coarser mesh

o “improve” means they remove high-frequency error components
efficiently
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nonlinear 2-mesh scheme

Qh QH

o nodewise problem: for 1" a hat function or dof, solve for ¢ € R to
make the residual at that location zero:

oi(e) = r"(w" + cul)wf] = 0

@ sweeping through and solving nodewise problems is a smoother

o Fourier analysis shows smoothing property
o after smoothing, e and r” have smaller high-frequencies

o after smoothing, the correction equation on Q" should be
accurately approximate-able on the coarser mesh Qf
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nonlinear 2-mesh scheme

Qh L

o updated goal: use a coarser mesh Q' to somehow estimate the
solution u” in FA(uh) — Fh(w™) = ri(w")
o Brandt’s (1977) full approximation scheme (FAS) equation:
FP(u") — FP(R*w") = Rr"(w")
o R' - Vh — VH is node-wise injection

R: (V" — (VM) is canonical restriction
o note if wh = u" exactly then u" = R*w" since F" injective

o rewritten FAS equation: let /" = F/(R*w") + R r"(w") then
FH(uM) ="
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full approximation scheme (FAS) 2-mesh solver

fine mesh = Q" Q' = coarse mesh
pre-smooth over fine: [smoother updates w”]
restrict: " = FA(R W) + Rri(wh)
solve coarse: FH(wHy = H
correct: wh — wh + P(w — R*w")
post-smooth over fine: [smoother updates w”]

o P: VM - Vhis canonical prolongation

o restrict+(solve coarse)+correct = FAS coarse grid correction
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nonlinear multigrid by FAS: V-cycle

FAS-VCYCLE(¢/; w):
for j = J downto j = 1
SMOOTH™ (¢/; w/)
wi—! = Rew/
0=' = F=Y(W")+ R (¢ — FI(W))
SOLVE(#0; wP)
forj=1toj=J
w «— w + P(w~! — R*w/)
SMOOTH P (¢/; w/)
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nonlinear multigrid by FAS: FMG cycle

FMG = full multigrid
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does it work?

@ FAS multigrid works very well on nice nonlinear PDE problems
@ example: Liouville-Bratu equation

—V?u—-¢€e“=0

with Dirichlet boundary conditions on Q = (0, 1)?

o discretize by (straightforward) finite differences
@ minimal problem-specific code:

1. residual evaluation on grid level: Ff(~)
2. pointwise smoother: ¢;(c) = 0Vi

o nonlinear Gauss-Seidel iteration
3. coarsest-level solve can be same as smoother, or more
sophisticated (e.g. Newton iteration)
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the meaning of “fast solver”

@ what does “very well” on the previous slide mean?

definition
a solver is optimal if work in flops, and/or run-time, is O(N) for N
unknowns

@ since ~1980: optimality can be achieved by multigrid for PDE
problems with reasonably-smooth solutions

o in fact, multigrid people get greedy
definition |
a solver shows textbook multigrid efficiency if it does total work less
than 10 times that of a single smoother sweep

o TME = optimal
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Bratu model problem: TME

Q@ bratu.c

@ observed optimality:

flops = O(N')
processor time = O(N')

@ highest-resolution 12-level
V-cycle has N ~ 108
unknowns

@ compare ~ 20 us/N for
Poisson using Firedrake
(P4, geometric multigrid)

Bueler and Farrell

us /N

0.5 1

0.0

............ o
s
10° 1‘05 1(‘)7 108
N = degrees of freedom
15/41
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1) variational inequalities (VIs)

2) nonlinear multigrid for PDEs
full approximation scheme (FAS)

@ multigrid for Vis
o full approximation scheme constraint decomposition (FASCD)

4) results
classical obstacle problem
advection-diffusion of a concentration
glacier surface elevations



an FAS multigrid strategy for Vls

@ new algorithm (Bueler & Farrell 2023):
FASCD = full approximation scheme constraint decomposition

@ what is “constraint decomposition” in FASCD?
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subspace decomposition

QS QZ Q1 QO
o start with subspace decomposition over nested meshes:
Q c
o the FE function spaces V/ over (¥ are also nested:
Vicyitt

definition

J
v/ ="V s called a subspace decomposition (Xu 1992)
i—0

o non-unique vector space sum
o Xu’s paper explains how to analyze linear multigrid for PDEs via
subspace decomposition
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constraint decomposition

o Tai's (2003) constraint decomposition non-trivially extends a
subspace decomposition VY = >; V' to convex subsets

o suppose K’ c V/ is a closed and convex subset

definition
J .

K = Z K' is a constraint decomposition (CD) if there are closed
i=0

and convex subsets K ¢ V', and (nonlinear) projections I, : K¥ — K/,
J

so that v = Z ;v and a stability condition applies (not shown)
i=0
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constraint decompos

ition

o observation: generally K’ ¢ K/

Vo
AP K
Y(x2)9
-
O o(zy) Ky "

obstacle problem on a two-point mesh with V =~ R2

Bueler and Farrell
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iterations over constraint decomposition

o Tai propgsed abstract iterations for solving VI(F, ¢, K) over a CD
K =3 oK'

CD-MULT(u):
fori=0,....m-—1:
find w; € K; s.t.
<F(ij+w,-+zrlju>, V,'*W,'> > L, vi—w;) Vv, € K
j<i j>i

returnw=>%",w; €k

o Tai’s iterations are not practical because you compute on the
finest level in fact

@ we added two techniques: defect obstacles on each level, and
FAS coarse corrections
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defect obstacles

o recall £ = {v > ¢} in an obstacle problem

definition
for finest-level admissible set K/ = {v/ > ¢/} ¢ V/ and an iterate
w” e K, the defect obstacle (Graser & Kornhuber 2009) is

o= —wd eV

o note Y <0
@ we generate the CD through

defect obstacles ¥/ on each
level via monotone restriction:

® coarse mesh node

P o ji L
X/ =R X/ fine mesh node

o a nonlinear operator
o also due to (Gréser & Kornhuber 2009)
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up and down sets

o upward part in the FASCD V-cycle uses large admissible sets:
W ={z >}

o downward sets are smaller to guarantee admissibility of the
upcoming coarse correction:

D=y >d =¥}

J
o Ul = ZD’ is a CD of the jth-level admissible set

i=0
Y3 € D? 23 € u?
y26D2 22 cU?
Y1 € D! z1 € Ut
2 Euo DO
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X
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full approximation scheme constraint decomposition

FASCD-VCYCLE(J, ¢/, 4; w/):
o= —w
for j = J downto j =1

Y1 =R®y
¢ = — Py
y'=0

SMOOTH"™ (¢ ¢J wi; yl)
OV =YW+ R(U - (W + )

=0
SOLVE(£0, X%, w?; 2°)
forj=1toj=J

Z =yl + Pz
SMOOTH™® (¢, x/, w/; Z)
return w” 4 z/
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FASCD V-cycle: visualization on a 1D problem
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FASCD specifics

see paper (Bueler & Farrell 2023) for:
o generalization to upper and lower obstacles:
K = (g < v! <3

o stopping criteria
o evaluate whether CP/KKT conditions are satisfied
o FMG cycle

@ details of O(m,) smoother
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1) variational inequalities (VIs)

2) nonlinear multigrid for PDEs
full approximation scheme (FAS)

3) multigrid for Vs
full approximation scheme constraint decomposition (FASCD)

@ results

o classical obstacle problem
@ advection-diffusion of a concentration
o glacier surface elevations



classical obstacle problem by FASCD

1841 ® \/-cycles (ball problem)
16
14 1
12 A .

104

2 L]

T T T T T T
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my (number of unknowns)
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classical obstacle problem by FASCD

18+

16 4

14 1

121

104

V-cycles (ball problem)
O(log(my))

Bueler and Farrell

T T T T
10? 10? 10* 10°
my (number of unknowns)
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107
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classical obstacle problem by FASCD

18+

16 4

14 1

121

104

V-cycles (ball problem)
FMG cycles (ball problem)

T T T T T
102 103 10* 10° 108 107
my (number of unknowns)
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classical obstacle problem by FASCD

18+

16 4

14 1

121

104

® V-cycles (ball problem) L]
FMG cycles (ball problem)
® V-cycles (spiral problem)

+ FMG cycles (spiral problem) ° °
0 o
o
o o}
o
[
o

+ + +

T T T T T T
102 103 104 10° 106 107 108
my; (number of unknowns)
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advection-diffusion of a concentration

o suppose u(x) is a concentration in Q ¢ RY: 0<u<i1

@ suppose it moves by combination of diffusion, advection by wind
X(x), and source function ¢(x):

—eV2u+ X -Vu=¢
o two active sets (d = 2 case):

A, = {u(x) = 0} Ay = {u(x) =1}

¢
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advection-diffusion of a concentration

4
+ FMG cycles (2D)
FMG cycles (3D)
3 + + +
2 + + 4++4+ 4
14 +
101 102 103 104 10°% 108 107

my (number of unknowns)

compare: linear programming (Klee-Minty cube?), spatial correlations
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problem: geometry of flowing glacier ice in a climate

@ “where are there glaciers?” is a free-boundary problem

i N\ e 7 g e

- Rurich
i y. 2

120000 21320 years ago

temperature

change (*C)

& <
=R

Sequinot et al. (2018)
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free-boundary problem: flowing glacier ice in a climate

o glacier = incompressible, viscous fluid driven by gravity

o to find: ice surface elevation s(t, x, y) and velocity u(t, x, y, z)

@ over fixed bed topography with elevation b(x, y)
o s(t,x,y) > b(x,y)

@ in a climate which adds or removes ice at a signed rate a(t, x, y)
o data a, b is defined on domain Q c R?

~~o P 2
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glacier free-boundary problem: naive strong form

o is this an adequate description?:

s>b everywhere in Q
Zf_aJru]s-ns where s(t, x, y) > b(x, y)

0 notes:
o surface velocity u|s is, in some manner, determined by s
o uls is generally a non-local function of s
o hg = (—Vs, 1) is upward surface normal
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glacier free-boundary problem: steady VI form

o admissible surface elevations:'
K={reV :r>b}
o steady (% = 0) VI problem for surface elevation s € K:
(¢(s)—a,r—s)>0 forallrek

where

with extension by 0 to all of Q

?

T(s—b)B3 € W(Q) so V = (W'*)*/8 . see (Jouvet & Bueler, 2012)
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shallow ice approximation

o the shallow ice approximation is a highly-simplified view of
conservation of momentum

@ isothermal, nonsliding case:

_ e p\4 4 o (Vie_ p)5 2
= (s = b)Vs/*~V (5(3 b)|Vs| vS)
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FASCD test case: simplified ice sheet the size of Greenland

o ice sheet = big glacier

1.2e+02
[ 100
— 80

— 60
— 40

0.0e+00

surface speed (m/a)
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FASCD: parallel weak scaling

@ observed optimality of FMG solver
o good parallel weak scaling as well

o each processor owns 641 x 641 (sub) mesh
o P = 1024 run had 204812 = 4.1 x 108 unknowns
...and 88 meter resolution

200

run time (s)

16 64
processors
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summary and outlook

@ FASCD = new multilevel solver for VI (free-boundary) problems
o implemented in Python Firedrake (over PETSc)

o observed optimality, even TME, in many cases
o actually fast

to do:
o add mesh adaptivity to free boundary (Stefano)
o implement in C inside PETSc
o apply to space-time (parabolic) VI problems
o prove convergence
o identify smoothers for problems like elastic contact
o include membrane stresses in glacier case

Bueler and Farrell Fast solvers for PDE subject to inequalities 39/41



references

(%)

A. Brandt (1977). Multi-level adaptive solutions to boundary-value problems,
Mathematics of Computation 31 (138), 333—390 doi:10.1090/S0025-5718-1977-0431719-X

O E. Bueler & P. Farrell (2023). A full approximation scheme multilevel method for
nonlinear variational inequalities, submitted arxiv:2308.06888

@ C. Graser & R. Kornhuber (2009). Multigrid methods for obstacle problems,
J. Comput. Math., 1—44

@ G. Jouvet & E. Bueler (2012). Steady, shallow ice sheets as obstacle problems:
well-posedness and finite element approximation, SIAM J. Appl. Math. 72 (4),
1292—-1314 doi:10.1137/110856654

@ X. Tai (2003). Rate of convergence for some constraint decomposition methods
for nonlinear variational inequalities, Numer. Math. 93 (4), 755-786
doi:10.1007/s002110200404

O J. Xu (1992). lterative methods by space decomposition and subspace
correction, SIAM Rev. 34 (4), 581-613 doi:10.1137/1034116

Bueler and Farrell Fast solvers for PDE subject to inequalities 40/41


https://doi.org/10.1090/S0025-5718-1977-0431719-X
https://arxiv.org/abs/2308.06888
https://doi.org/10.1137/110856654
https://doi.org/10.1007/s002110200404
https://doi.org/10.1137/1034116

background references

@ E. Bueler (2021). PETSc for Partial Differential Equations, SIAM Press,
Philadelphia

@ R. Glowinski (1984). Numerical Methods for Nonlinear Variational Problems,
Springer, Berlin

N. Kikuchi & J. Oden (1988). Contact Problems in Elasticity: A Study of
Variational Inequalities and Finite Element Methods, SIAM Press, Philadelphia

©

@ D. Kinderlehrer & G. Stampacchia (1980). An Introduction to Variational
Inequalities and their Applications, Academic Press, New York

U. Trottenberg, C. Oosterlee, & A. Schuller (2001). Multigrid, Elsevier, Oxford

©

Bueler and Farrell Fast solvers for PDE subject to inequalities 41/41



	variational inequalities (VIs)
	nonlinear multigrid for PDEs
	full approximation scheme (FAS)

	multigrid for VIs
	full approximation scheme constraint decomposition (FASCD)

	results
	classical obstacle problem
	advection-diffusion of a concentration
	glacier surface elevations


