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example: classical obstacle problem

problem. on a domain Ω ⊂ R2, find the displacement u(x) of a
membrane, with fixed value u = g on ∂Ω, above an obstacle ψ(x),
which minimizes elastic (plus some potential) energy

J(v) =
∫
Ω

1
2
|∇v |2 − f v

shown above: Ω a square, ψ(x) a hemisphere
Q. how to solve this as a PDE with boundary conditions?
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example: classical obstacle problem

this is constrained optimization over an infinite-dimensional
admissible set

K =
{

v ∈ H1(Ω) : v
∣∣
∂Ω

= g and v ≥ ψ
}

◦ K is a closed and convex subset of the Sobolev space

H1(Ω) =

{
v :

∫
Ω

|v |2 + |∇v |2 <∞
}
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example: classical obstacle problem

the solution defines subsets of Ω:
◦ active set Au = {u = ψ}
◦ inactive set Ru = {u > ψ}
◦ free boundary Γu = ∂Ru ∩ Ω
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example: classical obstacle problem

a naive strong form would pose the problem in terms of its
solution:

−∇2u = f on Ru

u = ψ on Au

◦ Poisson equation −∇2u = f is “J ′(u) = 0” on Ru
◦ using the solution u to define the set Ru on which to solve the PDE
−∇2u = f does not lead to solution algorithms
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example: classical obstacle problem

the complementarity problem (CP) is a meaningful strong form:

u − ψ ≥ 0

−∇2u − f ≥ 0

(u − ψ)(−∇2u − f ) = 0

◦ CP = KKT conditions
but in ∞-dimensions
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example: classical obstacle problem

the weak form is a variational inequality (VI), which says that J ′(u)
points directly into K:〈

J ′(u), v − u
〉
=

∫
Ω
∇u · ∇(v − u)− f (v − u) ≥ 0

for all v ∈ K
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VI = weak form

for problems of optimization type, the VI is the weak form, with
v − u as the test function:

J(u) ≤ J(v) ∀v ∈ K ⇐⇒ ⟨J ′(u), v − u⟩ ≥ 0 ∀v ∈ K
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general variational inequalities

let K be a closed and convex subset of a Banach space V
suppose F : K → V ′ is a continuous operator
◦ F is generally nonlinear
◦ F may be defined only on K
◦ F may not be the derivative of an objective function J
◦ F = J ′, a linear operator, in classical obstacle problem

the general variational inequality VI(F ,K) is

⟨F (u), v − u⟩ ≥ 0 for all v ∈ K

when K is nontrivial the problem VI(F ,K) is nonlinear even when
F is a linear operator
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VI = constrained “system of equations”

unconstrained constrained
optimization

min
u∈V

J(u) min
u∈K⊂V

J(u)

equations find u ∈ V:

F (u) = 0

find u ∈ K ⊂ V:

⟨F (u), v − u⟩ ≥ 0 ∀v ∈ K
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applications of VIs

elastic contact
◦ car tires, for example

pricing of American options
◦ inequality-constrained Black-Scholes model

the geometry of glaciers

first-semester calculus:

u ← min
x∈[a,b]

f (x) ⇐⇒ f ′(u)(v − u) ≥ 0 ∀v ∈ [a,b]
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Outline

1 variational inequalities (VIs)

2 nonlinear multigrid for PDEs
full approximation scheme (FAS)

3 multigrid for VIs
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4 results
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nonlinear 2-mesh scheme

Ωh ΩH

consider a nonlinear elliptic PDE problem:

F (u) = ℓ

◦ u ∈ V = H1(Ω)
◦ ℓ ∈ V ′

◦ F : V → V ′ continuous and one-to-one
◦ for example, the Liouville-Bratu problem: −∇2u − eu = f

discretization gives algebraic system on fine mesh Ωh:

F h(uh) = ℓh

◦ uh denotes exact (algebraic) solution
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nonlinear 2-mesh scheme

Ωh ΩH

goal: to solve F h(uh) = ℓh on Ωh

suppose wh is a not-yet-converged iterate:

rh = ℓh − F h(wh), ∥rh∥ > TOL

how can we improve wh without globally linearizing F h?
are there alternatives to Newton’s method?

notes:
i) the residual rh = ℓh − F h(wh) is computable
ii) the error eh = uh − wh is unknown
iii) our equation can be rewritten

F h(uh)− F h(wh) = rh
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nonlinear 2-mesh scheme

Ωh ΩH

updated goal: from iterate wh, to solve

F h(uh)− F h(wh) = rh

for F h linear, convert this to the error equation

F h(eh) = rh

an approximation solution ẽh would improve our iterate:

wh ← wh + ẽh

but F h is not linear!
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nonlinear 2-mesh scheme

Ωh ΩH

updated goal: use a coarser mesh ΩH to somehow estimate the
solution uh in the nonlinear correction equation

F h(uh)− F h(wh) = rh

basic multigrid idea: there are algorithms (smoothers) which
“improve” wh . . . use them a little first . . . then correct from the
coarser mesh
◦ “improve” means they remove high-frequency error components

efficiently

Bueler and Farrell Fast solvers for PDE subject to inequalities 10 / 41



nonlinear 2-mesh scheme

Ωh ΩH

nodewise problem: for ψh
i a hat function or dof, solve for c ∈ R to

make the residual at that location zero:

ϕi(c) = rh(wh + cψh
i )[ψ

h
i ] = 0

sweeping through and solving nodewise problems is a smoother
◦ Fourier analysis shows smoothing property
◦ after smoothing, eh and rh have smaller high-frequencies

after smoothing, the correction equation on Ωh should be
accurately approximate-able on the coarser mesh ΩH
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nonlinear 2-mesh scheme

Ωh ΩH

updated goal: use a coarser mesh ΩH to somehow estimate the
solution uh in F h(uh)− F h(wh) = rh(wh)

Brandt’s (1977) full approximation scheme (FAS) equation:

F H(uH)− F H(R•wh) = R rh(wh)

◦ R• : Vh → VH is node-wise injection
◦ R : (Vh)′ → (VH)′ is canonical restriction
◦ note: if wh = uh exactly then uH = R•wh since F H injective

rewritten FAS equation: let ℓH = F H(R•wh) + R rh(wh) then

F H(uH) = ℓH
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full approximation scheme (FAS) 2-mesh solver

fine mesh = Ωh ΩH = coarse mesh

pre-smooth over fine: [smoother updates wh]

restrict: ℓH = F H(R•wh) + R rh(wh)

solve coarse: F H(wH) = ℓH

correct: wh ← wh + P(wH − R•wh)

post-smooth over fine: [smoother updates wh]

P : VH → Vh is canonical prolongation

restrict+(solve coarse)+correct = FAS coarse grid correction
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nonlinear multigrid by FAS: V-cycle

J = 3 j = 2 j = 1 j = 0

FAS-VCYCLE(ℓJ ;wJ):
for j = J downto j = 1

SMOOTHdown(ℓj ;w j)
w j−1 = R•w j

ℓj−1 = F j−1(w j−1) + R
(
ℓj − F j(w j)

)
SOLVE(ℓ0;w0)
for j = 1 to j = J

w j ← w j + P(w j−1 − R•w j)
SMOOTHup(ℓj ;w j)
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nonlinear multigrid by FAS: FMG cycle

J = 3 j = 2 j = 1 j = 0

FMG = full multigrid

Bueler and Farrell Fast solvers for PDE subject to inequalities 12 / 41



does it work?

FAS multigrid works very well on nice nonlinear PDE problems
example: Liouville-Bratu equation

−∇2u − eu = 0

with Dirichlet boundary conditions on Ω = (0,1)2

discretize by (straightforward) finite differences
minimal problem-specific code:

1. residual evaluation on grid level: F j(·)
2. pointwise smoother: ϕi(c) = 0 ∀i

◦ nonlinear Gauss-Seidel iteration

3. coarsest-level solve can be same as smoother, or more
sophisticated (e.g. Newton iteration)
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the meaning of “fast solver”

what does “very well” on the previous slide mean?

definition
a solver is optimal if work in flops, and/or run-time, is O(N) for N
unknowns

since ∼1980: optimality can be achieved by multigrid for PDE
problems with reasonably-smooth solutions
in fact, multigrid people get greedy

definition
a solver shows textbook multigrid efficiency if it does total work less
than 10 times that of a single smoother sweep

◦ TME =⇒ optimal
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Bratu model problem: TME

bratu.c

observed optimality:

flops = O(N1)

processor time = O(N1)

highest-resolution 12-level
V-cycle has N ≈ 108

unknowns
compare ≈ 20µ s/N for
Poisson using Firedrake
(P1, geometric multigrid)
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an FAS multigrid strategy for VIs

new algorithm (Bueler & Farrell 2023):
FASCD = full approximation scheme constraint decomposition

what is “constraint decomposition” in FASCD?
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subspace decomposition

Ω3 Ω2 Ω1 Ω0

start with subspace decomposition over nested meshes:

Ωj ⊂ Ωj+1

the FE function spaces V j over Ωj are also nested:

V j ⊂ V j+1

definition

VJ =
J∑

i=0

V i is called a subspace decomposition (Xu 1992)

◦ non-unique vector space sum
◦ Xu’s paper explains how to analyze linear multigrid for PDEs via

subspace decomposition
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constraint decomposition

Tai’s (2003) constraint decomposition non-trivially extends a
subspace decomposition VJ =

∑
i V i to convex subsets

suppose KJ ⊂ VJ is a closed and convex subset

definition

KJ =
J∑

i=0

Ki is a constraint decomposition (CD) if there are closed

and convex subsets Ki ⊂ V i , and (nonlinear) projections Πi : KJ → Ki ,

so that v =
J∑

i=0

Πiv and a stability condition applies (not shown)
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constraint decomposition

observation: generally Ki ̸⊂ KJ

0

K

V1
ψ(x1) K1

Π1

V2

ψ(x2)

K2
Π2

obstacle problem on a two-point mesh with V ∼= R2
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iterations over constraint decomposition

Tai proposed abstract iterations for solving VI(F , ℓ,K) over a CD
KJ =

∑J
i=0Ki

CD-MULT(u):
for i = 0, . . . ,m − 1:

find wi ∈ Ki s.t.〈
F
(∑

j<i

wj + wi +
∑
j>i

Πju
)
, vi − wi

〉
≥ ⟨ℓ, vi − wi⟩ ∀vi ∈ Ki

return w =
∑

i wi ∈ K

Tai’s iterations are not practical because you compute on the
finest level in fact
we added two techniques: defect obstacles on each level, and
FAS coarse corrections
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defect obstacles

recall K = {v ≥ ψ} in an obstacle problem

definition
for finest-level admissible set KJ = {vJ ≥ ψJ} ⊂ VJ and an iterate
wJ ∈ KJ , the defect obstacle (Gräser & Kornhuber 2009) is

χJ = ψJ − wJ ∈ VJ

◦ note χJ ≤ 0

we generate the CD through
defect obstacles χj on each
level via monotone restriction:

χj = R⊕χj+1

◦ a nonlinear operator
◦ also due to (Gräser & Kornhuber 2009)

coarse mesh node
fine mesh node
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up and down sets

upward part in the FASCD V-cycle uses large admissible sets:

U j = {z j ≥ χj}

downward sets are smaller to guarantee admissibility of the
upcoming coarse correction:

Dj = {y j ≥ ϕj = χj − χj−1}

U j =

j∑
i=0

Di is a CD of the j th-level admissible set
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multilevel constraint decomposition in FASCD
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full approximation scheme constraint decomposition

FASCD-VCYCLE(J, ℓJ , ψJ ;wJ):
χJ = ψJ − wJ

for j = J downto j = 1
χj−1 = R⊕χj

ϕj = χj − Pχj−1

y j = 0
SMOOTHdown(ℓj , ϕj ,w j ; y j)

w j−1 = R•(w j + y j)

ℓj−1 = f j−1(w j−1) + R
(
ℓj − f j(w j + y j)

)
z0 = 0
SOLVE(ℓ0, χ0,w0; z0)

for j = 1 to j = J
z j = y j + Pz j−1

SMOOTHup(ℓj , χj ,w j ; z j)

return wJ + zJ
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FASCD V-cycle: visualization on a 1D problem
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FASCD specifics

see paper (Bueler & Farrell 2023) for:
generalization to upper and lower obstacles:

KJ = {ψJ ≤ vJ ≤ ψJ}

stopping criteria
◦ evaluate whether CP/KKT conditions are satisfied

FMG cycle
details of O(mJ) smoother
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classical obstacle problem by FASCD
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classical obstacle problem by FASCD
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advection-diffusion of a concentration

suppose u(x) is a concentration in Ω ⊂ Rd : 0 ≤ u ≤ 1
suppose it moves by combination of diffusion, advection by wind
X (x), and source function ϕ(x):

−ϵ∇2u + X · ∇u = ϕ

two active sets (d = 2 case):

Au = {u(x) = 0} Au = {u(x) = 1}
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advection-diffusion of a concentration

compare: linear programming (Klee-Minty cube?), spatial correlations
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problem: geometry of flowing glacier ice in a climate

“where are there glaciers?” is a free-boundary problem

Sequinot et al. (2018)

Bueler and Farrell Fast solvers for PDE subject to inequalities 32 / 41



free-boundary problem: flowing glacier ice in a climate

glacier = incompressible, viscous fluid driven by gravity
to find: ice surface elevation s(t , x , y) and velocity u(t , x , y , z)
over fixed bed topography with elevation b(x , y)
◦ s(t , x , y) ≥ b(x , y)

in a climate which adds or removes ice at a signed rate a(t , x , y)
◦ data a,b is defined on domain Ω ⊂ R2

?→
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glacier free-boundary problem: naive strong form

is this an adequate description?:

s ≥ b everywhere in Ω

∂s
∂t

= a + u|s · ns where s(t , x , y) > b(x , y)

notes:
◦ surface velocity u|s is, in some manner, determined by s

u|s is generally a non-local function of s

◦ ns = ⟨−∇s,1⟩ is upward surface normal

?→
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glacier free-boundary problem: steady VI form

admissible surface elevations:1

K = {r ∈ V : r ≥ b}

steady (∂s
∂t = 0) VI problem for surface elevation s ∈ K:

⟨Φ(s)− a, r − s⟩ ≥ 0 for all r ∈ K

where
Φ(s) = −u|s · ns

with extension by 0 to all of Ω

1(s − b)8/3 ?
∈ W 1,4(Ω) so V ?

= (W 1,4)3/8 . . . see (Jouvet & Bueler, 2012)
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shallow ice approximation

the shallow ice approximation is a highly-simplified view of
conservation of momentum
isothermal, nonsliding case:

Φ(s) = −u|s · ns

= −γ
4
(s − b)4|∇s|4 −∇ ·

(γ
5
(s − b)5|∇s|2∇s

)
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FASCD test case: simplified ice sheet the size of Greenland

ice sheet = big glacier
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FASCD: parallel weak scaling

observed optimality of FMG solver
good parallel weak scaling as well
◦ each processor owns 641× 641 (sub) mesh
◦ P = 1024 run had 204812 = 4.1× 108 unknowns

. . . and 88 meter resolution
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summary and outlook

FASCD = new multilevel solver for VI (free-boundary) problems
◦ implemented in Python Firedrake (over PETSc)

observed optimality, even TME, in many cases
◦ actually fast

to do:
add mesh adaptivity to free boundary (Stefano)
implement in C inside PETSc
apply to space-time (parabolic) VI problems
prove convergence
identify smoothers for problems like elastic contact
include membrane stresses in glacier case
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