Fast solvers for partial differential equations subject to inequalities

Ed Bueler¹ Patrick Farrell²

¹University of Alaska Fairbanks

²Mathematical Institute, Oxford University

November 2023

UNIVERSITY of ALASKA

Many Traditions One Alaska

Outline: Fast solvers for PDEs subject to inequalities

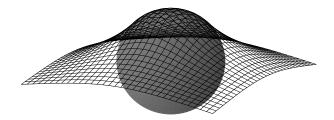
- variational inequalities (VIs)
- 2 nonlinear multigrid for PDEs
- 3 multigrid for VIs

MATH 692 Finite Element Seminar in Spring 2024 (Thursdays 3:30-4:30pm)

Outline: Fast solvers for PDEs subject to inequalities

- variational inequalities (VIs)
- 2 nonlinear multigrid for PDEs
- 3 multigrid for VIs

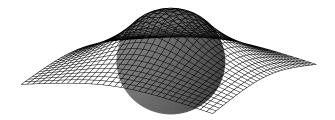
MATH 692 Finite Element Seminar in Spring 2024 (Thursdays 3:30-4:30pm)



problem. on a domain Ω ⊂ ℝ², find the displacement u(x) of a membrane, with fixed value u = g on ∂Ω, above an *obstacle* ψ(x), which minimizes elastic (plus some potential) energy

$$J(v) = \int_{\Omega} \frac{1}{2} |\nabla v|^2 - f v$$

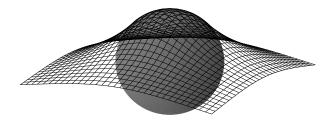
• shown above: Ω a square, $\psi(x)$ a hemisphere **Q.** how to solve this as a PDE with boundary conditions



problem. on a domain Ω ⊂ ℝ², find the displacement u(x) of a membrane, with fixed value u = g on ∂Ω, above an *obstacle* ψ(x), which minimizes elastic (plus some potential) energy

$$J(v) = \int_{\Omega} \frac{1}{2} |\nabla v|^2 - f v$$

- shown above: Ω a square, $\psi(x)$ a hemisphere
- Q. how to solve this as a PDE with boundary conditions?

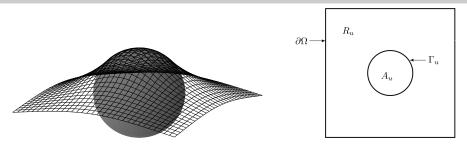


 this is constrained optimization over an infinite-dimensional admissible set

$$\mathcal{K} = \left\{ oldsymbol{v} \in H^1(\Omega) \ : \ oldsymbol{v} ig|_{\partial\Omega} = oldsymbol{g} \ ext{and} \ oldsymbol{v} \geq \psi
ight\}$$

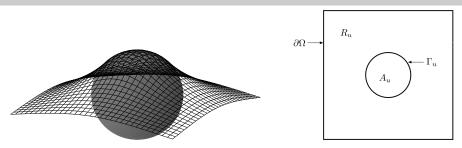
 $\circ~\mathcal{K}$ is a closed and convex subset of the Sobolev space

$$H^1(\Omega) = \left\{ oldsymbol{v} \,:\, \int_\Omega |oldsymbol{v}|^2 + |
abla oldsymbol{v}|^2 < \infty
ight\}$$



the solution defines subsets of Ω:

- active set $A_u = \{u = \psi\}$
- *inactive set* $R_u = \{u > \psi\}$
- $\circ \ \textit{free boundary} \ \Gamma_u = \partial \textit{R}_u \cap \Omega$

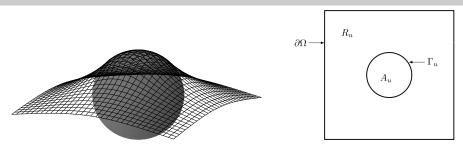


 a naive strong form would pose the problem in terms of its solution:

$$-
abla^2 u = f \quad \text{on } R_u$$

 $u = \psi \quad \text{on } A_u$

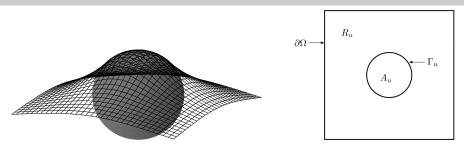
- Poisson equation $-\nabla^2 u = f$ is "J'(u) = 0" on R_u
- using the solution *u* to define the set R_u on which to solve the PDE $-\nabla^2 u = f$ does not lead to solution algorithms



• the complementarity problem (CP) is a meaningful strong form:

$$egin{aligned} & u-\psi \geq 0 \ & -
abla^2 u-f \geq 0 \ & (u-\psi)(-
abla^2 u-f) = 0 \end{aligned}$$

- \circ CP = KKT conditions
 - but in ∞ -dimensions



the weak form is a variational inequality (VI), which says that J'(u) points directly into *K*:

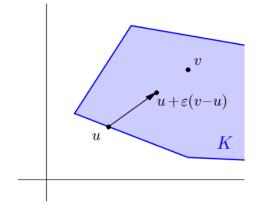
$$\langle J'(u), v-u \rangle = \int_{\Omega} \nabla u \cdot \nabla (v-u) - f(v-u) \ge 0$$

for all $v \in \mathcal{K}$

VI = weak form

• for problems of optimization type, the VI is the weak form, with v - u as the test function:

$$J(u) \leq J(v) \quad \forall v \in \mathcal{K} \qquad \Longleftrightarrow \qquad \langle J'(u), v - u \rangle \geq 0 \quad \forall v \in \mathcal{K}$$



- $\bullet~$ let ${\cal K}$ be a closed and convex subset of a Banach space ${\cal V}$
- suppose $F : \mathcal{K} \to \mathcal{V}'$ is a continuous operator
 - F is generally nonlinear
 - \circ *F* may be defined *only* on *K*
 - F may not be the derivative of an objective function J
 - $\circ F = J'$, a linear operator, in classical obstacle problem
- the general variational inequality $VI(F, \mathcal{K})$ is

 $\langle F(u), v - u \rangle \ge 0$ for all $v \in \mathcal{K}$

• when \mathcal{K} is nontrivial the problem $VI(F,\mathcal{K})$ is nonlinear *even when F* is a linear operator

VI = constrained "system of equations"

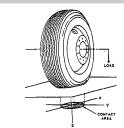
	unconstrained	constrained
optimization		
	$\min_{u\in\mathcal{V}}J(u)$	$\min_{u \in \mathcal{K} \subset \mathcal{V}} J(u)$
equations	find $u \in \mathcal{V}$:	find $u \in \mathcal{K} \subset \mathcal{V}$:
	F(u) = 0	$\langle F(u), v-u \rangle \geq 0 \forall v \in \mathcal{K}$

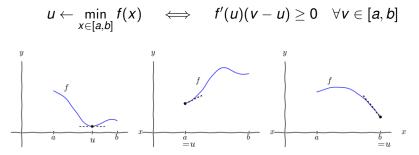
	unconstrained	constrained
optimization	$\min_{u\in\mathcal{V}}J(u)$	$\min_{u\in\mathcal{K}\subset\mathcal{V}}J(u)$
weak form equations	find $u \in \mathcal{V}$:	find $u \in \mathcal{K} \subset \mathcal{V}$:
·	$\langle F(u), v \rangle = 0 \forall v \in \mathcal{V}$	$\langle F(u), v - u \rangle \ge 0 \forall v \in \mathcal{K}$

applications of VIs

- elastic contact
 - o car tires, for example
- pricing of American options

 inequality-constrained Black-Scholes model
- the geometry of glaciers
- first-semester calculus:





Fast solvers for PDE subject to inequalities

Outline

variational inequalities (VIs)

nonlinear multigrid for PDEs
 full approximation scheme (FAS)

3 multigrid for VIs

full approximation scheme constraint decomposition (FASCD)

4) results

- classical obstacle problem
- advection-diffusion of a concentration
- glacier surface elevations

• consider a nonlinear elliptic PDE problem:

 $F(u) = \ell$

•
$$u \in \mathcal{V} = H^1(\Omega)$$

$$\circ \ \ell \in \mathcal{V}'$$

$$\circ\ F: \mathcal{V} \to \mathcal{V}'$$
 continuous and one-to-one

- for example, the Liouville-Bratu problem: $-\nabla^2 u e^u = f$
- discretization gives algebraic system on fine mesh Ω^h :

$$F^h(u^h) = \ell^h$$

• *u^h* denotes exact (algebraic) solution

- goal: to solve $F^h(u^h) = \ell^h$ on Ω^h
- suppose *w^h* is a not-yet-converged iterate:

$$r^h = \ell^h - F^h(w^h), \qquad \|r^h\| > \text{TOL}$$

• how can we improve w^h without globally linearizing F^h ?

• are there alternatives to Newton's method?

o notes:

- *i*) the *residual* $r^h = \ell^h F^h(w^h)$ is computable
- *ii)* the *error* $e^h = u^h w^h$ is unknown

iii) our equation can be rewritten

$$F^h(u^h)-F^h(w^h)=r^h$$

• updated goal: from iterate w^h, to solve

$$F^h(u^h) - F^h(w^h) = r^h$$

• for *F^h* linear, convert this to the error equation

$$F^h(e^h)=r^h$$

an approximation solution ^e^h would improve our iterate:

$$w^h \leftarrow w^h + ilde{e}^h$$

but F^h is not linear!

• updated goal: from iterate w^h, to solve

$$F^h(u^h) - F^h(w^h) = r^h$$

• for *F^h* linear, convert this to the error equation

$$F^h(e^h) = r^h$$

an approximation solution ^e^h would improve our iterate:

$$oldsymbol{w}^h \leftarrow oldsymbol{w}^h + \widetilde{oldsymbol{e}}^h$$

• but *F^h* is not linear!

updated goal: use a coarser mesh Ω^H to somehow estimate the solution u^h in the nonlinear correction equation

 $F^h(u^h) - F^h(w^h) = r^h$

- basic multigrid idea: there are algorithms (smoothers) which "improve" w^h... use them a little first ... then correct from the coarser mesh
 - "improve" means they remove high-frequency error components efficiently

nodewise problem: for ψ^h_i a hat function or dof, solve for c ∈ ℝ to make the residual at that location zero:

 $\phi_i(\boldsymbol{c}) = \boldsymbol{r}^h(\boldsymbol{w}^h + \boldsymbol{c}\psi_i^h)[\psi_i^h] = 0$

- sweeping through and solving nodewise problems is a **smoother**
 - Fourier analysis shows smoothing property
 - after smoothing, e^h and r^h have smaller high-frequencies
- after smoothing, the correction equation on Ω^h should be accurately approximate-able on the coarser mesh Ω^H

- updated goal: use a coarser mesh Ω^H to somehow estimate the solution u^h in $F^h(u^h) F^h(w^h) = r^h(w^h)$
- Brandt's (1977) full approximation scheme (FAS) equation:

$$F^{H}(u^{H}) - F^{H}(R^{\bullet}w^{h}) = Rr^{h}(w^{h})$$

$$F^H(u^H) = \ell^H$$

full approximation scheme (FAS) 2-mesh solver

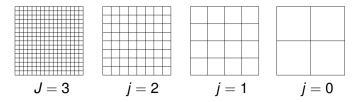
pre-smooth over fine:[smootherestrict: $\ell^H = F^H($ solve coarse: $F^H(w^H) =$ correct: $w^h \leftarrow w^h$ post-smooth over fine:[smoothe

 $[\text{smoother updates } w^{h}]$ $\ell^{H} = F^{H}(R^{\bullet}w^{h}) + Rr^{h}(w^{h})$ $F^{H}(w^{H}) = \ell^{H}$ $w^{h} \leftarrow w^{h} + P(w^{H} - R^{\bullet}w^{h})$ $[\text{smoother updates } w^{h}]$

• $P: \mathcal{V}^H \to \mathcal{V}^h$ is canonical prolongation

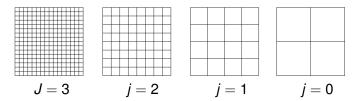
• restrict+(solve coarse)+correct = FAS coarse grid correction

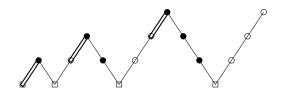
nonlinear multigrid by FAS: V-cycle



FAS-VCYCLE(
$$\ell^{J}$$
; w^{J}):
for $j = J$ downto $j = 1$
SMOOTH^{down}(ℓ^{j} ; w^{j})
 $w^{j-1} = R^{\bullet}w^{j}$
 $\ell^{j-1} = F^{j-1}(w^{j-1}) + R(\ell^{j} - F^{j}(w^{j}))$
SOLVE(ℓ^{0} ; w^{0})
for $j = 1$ to $j = J$
 $w^{j} \leftarrow w^{j} + P(w^{j-1} - R^{\bullet}w^{j})$
SMOOTH^{up}(ℓ^{j} ; w^{j})

nonlinear multigrid by FAS: FMG cycle





FMG = full multigrid

- FAS multigrid works very well on nice nonlinear PDE problems
- example: Liouville-Bratu equation

$$-\nabla^2 u - e^u = 0$$

with Dirichlet boundary conditions on $\Omega = (0, 1)^2$

- discretize by (straightforward) finite differences
- minimal problem-specific code:
 - 1. residual evaluation on grid level: $F^{j}(\cdot)$
 - 2. pointwise smoother: $\phi_i(c) = 0 \forall i$
 - o nonlinear Gauss-Seidel iteration
 - 3. coarsest-level solve can be same as smoother, or more sophisticated (e.g. Newton iteration)

• what does "very well" on the previous slide mean?

definition

a solver is *optimal* if work in flops, and/or run-time, is O(N) for N unknowns

- since ~1980: optimality can be achieved by multigrid for PDE problems with reasonably-smooth solutions
- in fact, multigrid people get greedy

definition

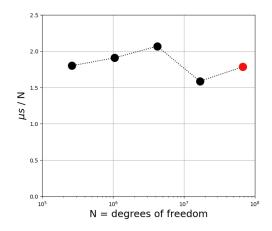
a solver shows *textbook multigrid efficiency* if it does total work less than 10 times that of a single smoother sweep

 \circ TME \implies optimal

- bratu.c
- observed optimality:

flops = $O(N^1)$ processor time = $O(N^1)$

- highest-resolution 12-level V-cycle has $N \approx 10^8$ unknowns
- compare ≈ 20 μ s/N for Poisson using Firedrake (P₁, geometric multigrid)



Outline

variational inequalities (VIs)

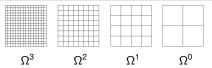
- nonlinear multigrid for PDEs
 full approximation scheme (FAS)
- multigrid for VIs
 full approximation scheme constraint decomposition (FASCD)

results

- classical obstacle problem
- advection-diffusion of a concentration
- glacier surface elevations

- new algorithm (Bueler & Farrell 2023):
 FASCD = full approximation scheme constraint decomposition
- what is "constraint decomposition" in FASCD?

subspace decomposition



start with subspace decomposition over nested meshes:

 $\Omega^j\subset\Omega^{j+1}$

• the FE function spaces \mathcal{V}^{j} over Ω^{j} are also nested:

 $\mathcal{V}^{j} \subset \mathcal{V}^{j+1}$

definition

$$\mathcal{V}^J = \sum_{i=0}^J \mathcal{V}^i$$
 is called a *subspace decomposition* (Xu 1992)

- non-unique vector space sum
- Xu's paper explains how to analyze linear multigrid for PDEs via subspace decomposition

Bueler and Farrell

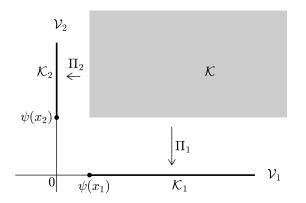
- Tai's (2003) constraint decomposition *non-trivially* extends a subspace decomposition V^J = ∑_i Vⁱ to convex subsets
- suppose $\mathcal{K}^J \subset \mathcal{V}^J$ is a closed and convex subset

definition

 $\mathcal{K}^{J} = \sum_{i=0}^{J} \mathcal{K}^{i} \quad \text{is a constraint decomposition (CD) if there are closed} \\ \text{and convex subsets } \mathcal{K}^{i} \subset \mathcal{V}^{i}, \text{ and (nonlinear) projections } \Pi_{i} : \mathcal{K}^{J} \to \mathcal{K}^{i}, \\ \text{so that } v = \sum_{i=0}^{J} \Pi_{i} v \text{ and a stability condition applies (not shown)} \end{cases}$

constraint decomposition

• observation: generally $\mathcal{K}^i \not\subset \mathcal{K}^J$



obstacle problem on a two-point mesh with $\mathcal{V} \cong \mathbb{R}^2$

• Tai proposed abstract iterations for solving $VI(F, \ell, K)$ over a CD $\mathcal{K}^J = \sum_{i=0}^J \mathcal{K}^i$

CD-MULT(*u*):
for
$$i = 0, ..., m - 1$$
:
find $w_i \in \mathcal{K}_i$ s.t.
 $\left\langle F\left(\sum_{j < i} w_j + w_i + \sum_{j > i} \Pi_j u\right), v_i - w_i \right\rangle \ge \langle \ell, v_i - w_i \rangle \ \forall v_i \in \mathcal{K}_i$
return $w = \sum_i w_i \in \mathcal{K}$

- Tai's iterations are not practical because you compute on the finest level in fact
- we added two techniques: *defect obstacles* on each level, and *FAS coarse corrections*

• recall $\mathcal{K} = \{ \mathbf{v} \geq \psi \}$ in an obstacle problem

definition

for finest-level admissible set $\mathcal{K}^J = \{ v^J \ge \psi^J \} \subset \mathcal{V}^J$ and an iterate $w^J \in \mathcal{K}^J$, the *defect obstacle* (Gräser & Kornhuber 2009) is

$$\chi^J = \psi^J - \mathbf{W}^J \in \mathcal{V}^J$$

 \circ note $\chi^J \leq \mathbf{0}$

 we generate the CD through defect obstacles χ^j on each level via *monotone restriction*:

$$\chi^j = {\pmb{R}}^{\oplus} \chi^{j+1}$$

- coarse mesh node
- fine mesh node

- o a nonlinear operator
- also due to (Gräser & Kornhuber 2009)

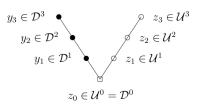
• upward part in the FASCD V-cycle uses large admissible sets:

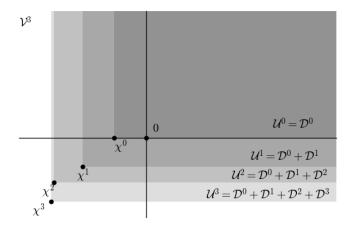
$$\mathcal{U}^j = \{ z^j \ge \chi^j \}$$

 downward sets are smaller to guarantee admissibility of the upcoming coarse correction:

$$\mathcal{D}^j = \{ \mathbf{y}^j \ge \phi^j = \chi^j - \chi^{j-1} \}$$

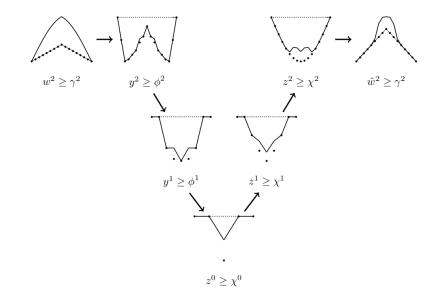
•
$$\mathcal{U}^{j} = \sum_{i=0}^{j} \mathcal{D}^{i}$$
 is a CD of the *j*th-level admissible set





FASCD-VCYCLE $(J, \ell^J, \psi^J; W^J)$: $\gamma^J = \psi^J - W^J$ for i = J downto i = 1 $\chi^{j-1} = R^{\bigoplus} \chi^j$ $\phi^j = \chi^j - P \chi^{j-1}$ $v^j = 0$ SMOOTH^{down} $(\ell^j, \phi^j, w^j; \gamma^j)$ $w^{j-1} = R^{\bullet}(w^j + v^j)$ $\ell^{j-1} = f^{j-1}(w^{j-1}) + R(\ell^j - f^j(w^j + v^j))$ $z^0 = 0$ SOLVE $(\ell^0, \chi^0, W^0; Z^0)$ for i = 1 to i = J $z^{j} = v^{j} + P z^{j-1}$ SMOOTH^{up} $(\ell^j, \chi^j, w^j; z^j)$ return $w^J + z^J$

FASCD V-cycle: visualization on a 1D problem



see paper (Bueler & Farrell 2023) for:

• generalization to upper and lower obstacles:

$$\mathcal{K}^{J} = \{ \underline{\psi}^{J} \le \mathbf{v}^{J} \le \overline{\psi}^{J} \}$$

- stopping criteria
 - evaluate whether CP/KKT conditions are satisfied
- FMG cycle
- details of $O(m_J)$ smoother

Outline

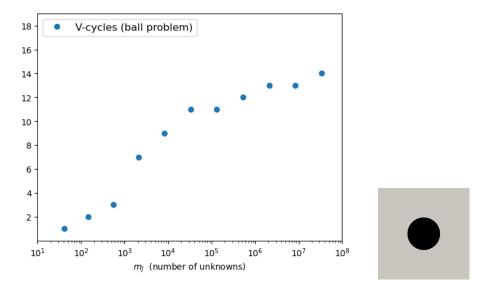
variational inequalities (VIs)

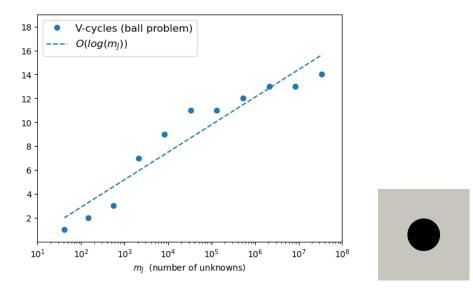
- nonlinear multigrid for PDEs
 full approximation scheme (FAS)
- 3 multigrid for VIs
 - full approximation scheme constraint decomposition (FASCD)

results

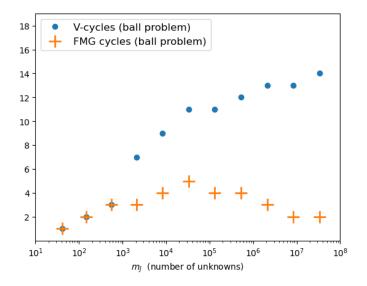
- classical obstacle problem
- advection-diffusion of a concentration
- glacier surface elevations

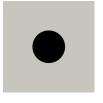
classical obstacle problem by FASCD



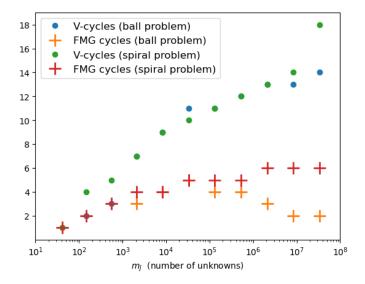


classical obstacle problem by FASCD





classical obstacle problem by FASCD



advection-diffusion of a concentration

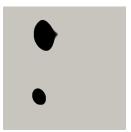
- suppose u(x) is a concentration in $\Omega \subset \mathbb{R}^d$: $0 \le u \le 1$
- suppose it moves by combination of diffusion, advection by wind *X*(*x*), and source function φ(*x*):

$$-\epsilon \nabla^2 \boldsymbol{u} + \boldsymbol{X} \cdot \nabla \boldsymbol{u} = \phi$$

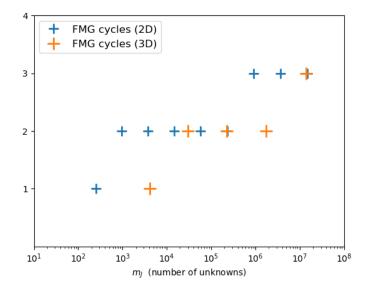
• two active sets (d = 2 case):

$$\underline{A}_u = \{u(x) = 0\}$$

$$\overline{A}_u = \{u(x) = 1\}$$



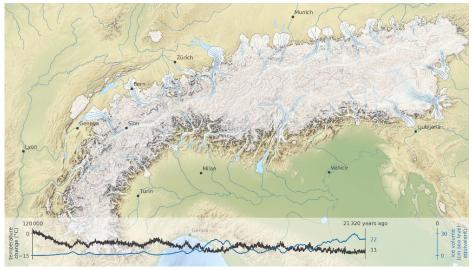
advection-diffusion of a concentration



compare: linear programming (Klee-Minty cube?), spatial correlations

problem: geometry of flowing glacier ice in a climate

• "where are there glaciers?" is a free-boundary problem

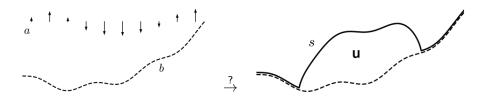


Sequinot et al. (2018)

- glacier = incompressible, viscous fluid driven by gravity
- to find: ice surface elevation s(t, x, y) and velocity $\mathbf{u}(t, x, y, z)$
- over fixed bed topography with elevation b(x, y)

 $\circ s(t, x, y) \geq b(x, y)$

in a *climate* which adds or removes ice at a signed rate *a*(*t*, *x*, *y*)
 o data *a*, *b* is defined on domain Ω ⊂ ℝ²



• is this an adequate description?:

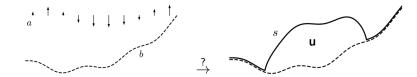
 $s \ge b$ everywhere in Ω $\frac{\partial s}{\partial t} = a + \mathbf{u}|_s \cdot \mathbf{n}_s$ where s(t, x, y) > b(x, y)

notes:

surface velocity u|s is, in some manner, determined by s

• $\mathbf{u}|_s$ is generally a *non-local* function of s

 \circ **n**_s = $\langle -\nabla s, 1 \rangle$ is upward surface normal



glacier free-boundary problem: steady VI form

admissible surface elevations:¹

$$\mathcal{K} = \{ r \in \mathcal{V} : r \ge b \}$$

• steady ($\frac{\partial s}{\partial t} = 0$) VI problem for surface elevation $s \in \mathcal{K}$:

$$\langle \Phi(s) - a, r - s \rangle \ge 0$$
 for all $r \in \mathcal{K}$

where

$$\Phi(s) = -\mathbf{u}|_s \cdot \mathbf{n}_s$$

with extension by 0 to all of Ω

$$(s-b)^{8/3} \stackrel{?}{\in} W^{1,4}(\Omega)$$
 so $\mathcal{V} \stackrel{?}{=} (W^{1,4})^{3/8} \dots$ see (Jouvet & Bueler, 2012)

Bueler and Farrell

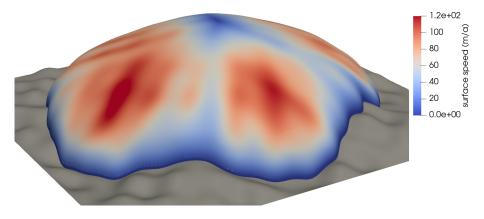
Fast solvers for PDE subject to inequalities

- the shallow ice approximation is a highly-simplified view of conservation of momentum
- isothermal, nonsliding case:

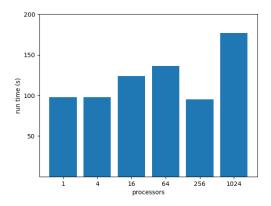
$$egin{aligned} \Phi(m{s}) &= -m{u}|_m{s}\cdotm{n}_m{s} \ &= -rac{\gamma}{4}(m{s}-m{b})^4|
ablam{s}|^4 -
abla\cdot\left(rac{\gamma}{5}(m{s}-m{b})^5|
ablam{s}|^2
ablam{s}
ight) \end{aligned}$$

FASCD test case: simplified ice sheet the size of Greenland

• *ice sheet* = big glacier



- observed optimality of FMG solver
- good parallel weak scaling as well
 - $\circ~$ each processor owns 641 \times 641 (sub) mesh
 - P = 1024 run had $20481^2 = 4.1 \times 10^8$ unknowns
 - ... and 88 meter resolution



- FASCD = new multilevel solver for VI (free-boundary) problems
 - implemented in Python Firedrake (over PETSc)
- observed optimality, even TME, in many cases
 - actually fast

to do:

- add mesh adaptivity to free boundary (Stefano)
- implement in C inside PETSc
- apply to space-time (parabolic) VI problems
- prove convergence
- identify smoothers for problems like elastic contact
- include membrane stresses in glacier case

references

- A. Brandt (1977). Multi-level adaptive solutions to boundary-value problems, Mathematics of Computation 31 (138), 333–390 doi:10.1090/S0025-5718-1977-0431719-X
- E. Bueler & P. Farrell (2023). A full approximation scheme multilevel method for nonlinear variational inequalities, submitted arxiv:2308.06888
- C. Gräser & R. Kornhuber (2009). Multigrid methods for obstacle problems, J. Comput. Math., 1–44
- G. Jouvet & E. Bueler (2012). Steady, shallow ice sheets as obstacle problems: well-posedness and finite element approximation, SIAM J. Appl. Math. 72 (4), 1292–1314 doi:10.1137/110856654
- X. Tai (2003). Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities, Numer. Math. 93 (4), 755–786 doi:10.1007/s002110200404
- J. Xu (1992). Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (4), 581–613 doi:10.1137/1034116

- E. Bueler (2021). *PETSc for Partial Differential Equations*, SIAM Press, Philadelphia
- R. Glowinski (1984). Numerical Methods for Nonlinear Variational Problems, Springer, Berlin
- N. Kikuchi & J. Oden (1988). Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Press, Philadelphia
- D. Kinderlehrer & G. Stampacchia (1980). An Introduction to Variational Inequalities and their Applications, Academic Press, New York
- U. Trottenberg, C. Oosterlee, & A. Schuller (2001). *Multigrid*, Elsevier, Oxford