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basic facts about glaciers

glacier ice is a very viscous,
incompressible, non-Newtonian fluid
◦ more soon . . .

glaciers lie on topography
◦ except sometimes they float on

water (floating tongue or ice shelf)
a glacier’s geometry (free surface),
and its velocity, evolve in contact with
the climate:
◦ snowfall
◦ surface melt
◦ subglacial melt
◦ sub-shelf melt (when floating)
◦ calving (into ocean)
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pictures of glaciers

Polaris Glacier (Post and LaChappelle 1971)
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pictures of glaciers

Taku Glacier (M. Truffer 2016)

Ed Bueler (UAF) Glacial flows, simulated faster 4 / 43



pictures of glaciers

Columbia Glacier (Sentinel-2B 2018, National Geographic 1910)
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what is an ice sheet?

def. ice sheet = a large glacier with small thickness/width ratio

Antarctic ice sheet (Pittard et al 2021)

Ed Bueler (UAF) Glacial flows, simulated faster 5 / 43



what is an ice sheet?

def. ice sheet = a large glacier with small thickness/width ratio

note smooth surface and rough bed . . . and vertical exaggeration (Schoof & Hewitt 2013)
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what is an ice sheet?

def. ice sheet = a large glacier with small thickness/width ratio

modeled Alpine ice sheet near last glacial maximum (Seguinot et al 2018)
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what is an ice sheet?

def. ice sheet = a large glacier with small thickness/width ratio

Laurentide ice sheet, ≈ 22,000 years ago (Margold, Stokes, Clark 2018)
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what is an ice sheet?

def. ice sheet = a large glacier with small thickness/width ratio

moraines in Illinois, Indiana, Ohio (Larsen 1986 and other sources)
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finally, an ice sheet is not sea ice!
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basic facts about glaciers . . . again

glacier ice is a very viscous,
incompressible, non-Newtonian fluid
◦ more soon . . .

glaciers lie on topography
◦ except sometimes they float on

water (floating tongue or ice shelf)
a glacier’s geometry (free surface),
and its velocity, evolve in contact with
the climate:
◦ snowfall
◦ surface melt
◦ subglacial melt
◦ sub-shelf melt (when floating)
◦ calving (into ocean)
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modeling simplifications

for simplicity/clarity of the upcoming model, I will ignore these
aspects of glacier physics in my talk:
◦ floating ice
◦ subglacial hydrology
◦ ice temperature
◦ fracture processes (e.g. calving)
◦ solid earth deformation

all are important for doing science!
UAF’s Parallel Ice Sheet Model (pism.io), for example, includes
these and other processes
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what is a glacier model?

Definition
a glacier model is a map
which evolves a glacier in a climate

at least two inputs:
◦ surface mass balance

a(t , x , y) =
(

snowfall minus
melt & runoff

)
• units of mass flux: kg m−2s−1

◦ bed elevation b(x , y)
at least two outputs:
◦ upper surface elevation s(t , x , y)
◦ ice velocity u(t , x , y , z)

map:
(

climate &
topography

)
→

(
geometry
& velocity

)
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the basic glacier model: notation

data a(t , x , y), b(x , y) are defined
on a fixed domain:

t ∈ [0,T ] and (x , y) ∈ Ω ⊂ R2

solution surface elevation
s(t , x , y) is defined on [0,T ]× Ω

◦ also a fixed domain,
◦ but s = b where there is no ice

s(t , x , y) determines the icy
domain Λ(t) ⊂ R3:

Λ(t) = {(x , y , z) : b(x , y) < z < s(t , x , y)}

the solution velocity u(t , x , y , z)
is defined on Λ(t)
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the basic glacier model: conservation

glacier evolution is merely physics . . . so it conserves
◦ mass
◦ momentum
◦ energy ← ignored for simplicity in this talk

conservation of mass happens
◦ within the icy domain Λ(t) ⊂ R3:

incompressibility ∇ · u = 0 in Λ(t)

◦ on the surfaces Γs(t), Γb(t) ⊂ ∂Λ(t):

surface kinematic equation (SKE)
∂s
∂t
− u|s · ns = a on Γs(t)

non-penetration u|b · nb = 0 on Γb(t)

▷ Γs(t) is upper surface of the ice
▷ Γb(t) is base of the ice
▷ ns = ⟨−∇s, 1⟩ is upward surface normal
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the free boundary problem for a fluid layer

glacier evolution is a free-boundary problem
specifically, the surface kinematic equation (SKE)

∂s
∂t
− u|s · ns = a

applies only on the ice upper surface Γs(t)
in the remainder of the (fixed) domain Ω ⊂ R2, complementarity
holds:

s = b and a ≤ 0

for more on this perspective see Bueler (2021), Conservation laws for
free-boundary fluid layers, SIAM J. Appl. Math
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the basic glacier model strong form: NCP coupled to Stokes

nonlinear complementarity problem (NCP) :

s − b ≥ 0 on Ω ⊂ R2

∂s
∂t
− u|s · ns − a ≥ 0 ”

(s − b)
(
∂s
∂t
− u|s · ns − a

)
= 0 ”

−∇ · (2ν(Du)Du) +∇p − ρig = 0 in Λ(t) ⊂ R3

∇ · u = 0 ”
τb − f(u|b) = 0 on Γb(t)

u|b · nb = 0 ”
(2ν(Du)Du− pI)ns = 0 on Γs(t)

◦ note: u|s = 0 where no ice
◦ viscosity by Glen law: 2ν(Du) = Γ|Du|p−2, p ≈ 4
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the basic glacier model is a DAE system

for this slide, forget complementarity and boundary conditions to
get simplified model “SKE coupled to Stokes”:

∂s
∂t
− u|s · ns − a = 0

−∇ · (2ν(Du)Du) +∇p − ρig = 0
∇ · u = 0

only the first of these 5 equations has a time derivative
◦ recall: ice is very viscous and incompressible

this time-dependent problem is a differential algebraic equation
(DAE), an extremely stiff system:

ẋ = f (x , y)
0 = g(x , y)

◦ in∞ dimensions, of course,
and also subject to complementarity
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the basic glacier model: current research

to the best of my knowledge, no current research groups are
studying well-posedness or regularity for this basic model
◦ though most researchers would agree NCP-coupled-to-Stokes is

indeed the intended model!

progress has been made on well-posedness of the lubrication
approximation of the basic model, the so-called shallow ice
approximation:
◦ 1D well-posedness on flat bed (Calvo et al 2002)
◦ 2D steady-state existence on general beds (Jouvet & Bueler 2012)
◦ 2D well-posedness on flat bed (Piersanti & Temam 2022)
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the basic glacier model: current numerical thinking

numerical glacier and ice sheet modelers tend to think of the
Stokes problem separately from surface evolution
◦ time-splitting or explicit time-stepping is often taken for granted

. . . and ice sheet geometry evolution is often addressed with
minimal awareness of complementarity

the NCP-coupled-to-Stokes basic model is not yet in common use
for high-resolution, long-duration ice sheet simulations
◦ because it is too slow
◦ can we make it fast enough to use? ← what I am working on
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the mass-continuity equation view

“thickness transport form” helps for evolution or stability questions
define:

H(t , x , y) = s − b ice thickness

U(t , x , y) =
1
H

∫ s

b
u dz

vertically-averaged
horizontal velocity

◦ note s and H are equivalent variables for modeling ice geometry
the mass continuity equation for thickness, an apparent
advection equation, follows from the SKE and incompressibility:

∂H
∂t

+∇ · (UH) = a

question: is this really an advection equation?
answer: not really . . . ice flows (mostly) downhill so

U ∼ −∇s ∼ −∇H

in any case, the NCP-coupled-to-Stokes system has no
characteristic curves
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mass continuity equation: advection or diffusion?

advective schema:
∂H
∂t

+∇ · (UH) = a

diffusion schema:
∂H
∂t
−∇ · (D∇s) = a

both forms are nonlinear: U = U(H,∇s), D = D(H,∇s)
the glacier modeling literature is confusing!
the diffusion schema is literal in the shallow ice approximation
◦ more on this momentarily

regardless of your schema preference, the fact that ice flows
downhill has time-stepping stability consequences!
. . . so let us recall some traditional numerical analysis
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traditional PDE time-stepping

advective schema:
∂H
∂t

+∇ · (UH) = a

diffusion schema:
∂H
∂t
−∇ · (D∇s) = a

explicit time stepping is common for advections
for example, forward Euler using spacing h and time step ∆t :

Hℓ+1
j − Hℓ

j

∆t
+

qℓ
j+1/2 − qℓ

j−1/2

h
= aℓ

j

◦ need good approximations of flux q = UH: upwinding,
Lax-Wendroff, streamline diffusion, flux-limiters, . . .

◦ conditionally stable, with CFL maximum time step

∆t ≤ h
max |U|

= O(h)
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+∇ · (UH) = a

diffusion schema:
∂H
∂t
−∇ · (D∇s) = a

explicit time stepping for diffusions is best avoided
for example, forward Euler:

Hℓ+1
j − Hℓ

j

∆t
−

Dj+ 1
2
(sℓ

j+1 + sℓ
j )− Dj− 1

2
(sℓ

j + sℓ
j−1)

h2 = aℓ
j

◦ conditionally stable, with maximum time step

∆t ≤ h2

maxD
= O(h2)
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traditional PDE time-stepping

advective schema:
∂H
∂t

+∇ · (UH) = a

diffusion schema:
∂H
∂t
−∇ · (D∇s) = a

implicit time stepping for diffusions is often recommended
for example, backward Euler:

Hℓ+1
j − Hℓ

j

∆t
−

Dj+ 1
2
(sℓ+1

j+1 + sℓ+1
j )− Dj− 1

2
(sℓ+1

j + sℓ+1
j−1 )

h2 = aℓ
j

◦ unconditionally stable, but must solve equations at each step
◦ further implicit schemes: Crank-Nicolson, BDF, . . .
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time-stepping in current ice sheet models

current-technology, large-scale numerical models, including PISM,
use explicit time stepping
◦ this is embarrassing: the mathematical problem is a DAE

many researchers “believe” the advection schema
◦ time step is supposed to be determined by CFL using the coupled

solution velocity U

the accuracy/performance/usability consequences of the
suppressed DAE/diffusive character are hard to sweep under the
rug
the whole situation is a cry for mathematical clarity!
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time-stepping in future ice sheet models

implicit time-stepping is appropriate for DAE problems
future models will solve a sequence of NCP-coupled-to-Stokes
free-boundary problems at each time step
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shallow ice approximation ← not Stokes

the simplest of glacier flow approximations is the “lubrication”
approximation: shallow ice approximation (SIA)
SIA version of the NCP:

s − b ≥ 0,
∂s
∂t

+Φ(s)− a ≥ 0, (s − b)
(
∂s
∂t

+Φ(s)− a
)

= 0

the surface motion contribution Φ(s) = −u|s · ns has a formula:

Φ(s) = −γ

p
(s − b)p|∇s|p −∇ ·

(
γ

p + 1
(s − b)p+1|∇s|p−2∇s

)
◦ constants p = n + 1 and γ > 0 relate to ice deformation

Φ(s) is a doubly-nonlinear differential operator
◦ porous medium and p-Laplacian type simultaneously
◦ but local in surface and bed topography, which Stokes is not
◦ well-posedness holds for the weak form = variational inequality

(Calvo et al 2002, Jouvet & Bueler 2012, Piersanti & Temam 2022)
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nonlocality

however, from now on, let us avoid shallowness approximations
the basic glacier model (NCP coupled to Stokes) problem has a
non-local surface velocity function Φ(s) = −u|s · ns

s − b ≥ 0,
∂s
∂t

+Φ(s)− a ≥ 0, (s − b)
(
∂s
∂t

+Φ(s)− a
)

= 0

the Stokes velocity solution responds to a surface perturbation by
up- and down-stream changes, for several ice thicknesses, while
the SIA velocity responds only underneath the surface
perturbation
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the Stokes problem for ice

a non-shallow model solves a Stokes problem at each step:

−∇ · (2ν(Du)Du) +∇p − ρig = 0 in Λ ⊂ R3

∇ · u = 0 ”
τb − f(u|b) = 0 on Γb

u|b · nb = 0 ”
(2ν(Du)Du− pI)ns = 0 on Γs

this is the stress balance (conservation of momentum) problem
which determines velocity u and pressure p
how fast is the numerical solution process?
◦ how do solution algorithms scale with increasing spatial resolution?
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one slide course: numerical PDE solver algorithmic scaling

consider the Poisson equation:

−∇2u = f in Ω, u = 0 on ∂Ω

discretization generates a linear system A u = b with u ∈ Rm

the number of unknowns is the data size m:
◦ m = #(nodes in the mesh)
◦ m scales with mesh cell diameter: m ∼ h−2 in 2D

complexity or algorithmic scaling of flops, as m→∞, depends
on solver algorithm:
◦ O(m3) for direct linear algebra, ignoring matrix structure
◦ ≈ O(m2) for sparsity-exploiting direct linear algebra
◦ O(m1), optimal, for multigrid solvers
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ice sheet models: stress-balance solver complexity

Stokes: m = #(velocity and pressure unknowns)
model the scaling as O(m1+α), with α = 0 optimal
near-optimal solvers already exist: ← good news!
◦ α = 0.08 for Isaac et al. (2015) Stokes solver

▷ unstructured quadrilateral/tetrahedral mesh, Qk ×Qk−2 stable
elements, Schur-preconditioned Newton-Krylov, ice-column-oriented
algebraic multigrid (AMG) preconditioner for (u,u) block

◦ α = 0.05 for Tuminaro et al (2016) 1st-order (shallow) AMG solver
◦ similar for Brown et al (2013) 1st-order (shallow) GMG solver

but this is for Stokes solvers de-coupled from the
surface-evolution NCP
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ice sheet models: the analysis set-up

ice sheets are thin layers, thus ice sheet models often have O(1)
mesh points in the vertical direction
◦ e.g. Issac et al (2015) Stokes solver
◦ I am ignoring refinement in the vertical

data size: m = #(surface elevation & velocity & pressure unknowns)

assume domain Ω ⊂ R2 with width L and cell diameter h:

m ∼ L2

h2 L
h

recall explicit time-stepping stability:

advective
∂H
∂t

+∇ · (UH) = a =⇒ ∆t ≤ h
U

diffusion
∂H
∂t
−∇ · (D∇s) = a =⇒ ∆t ≤ h2

D

recall stress-balance solver complexity: O(m1+α)
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ice sheet models: the performance question

glaciologists want to run time-stepping high-resolution simulations
of ice sheets over e.g. 105 year ice age cycles

proposed metric: flops per model year

the question:

how does this metric scale in the high spatial resolution
limit h→ 0, equivalently m→∞?

the goal is optimality: flops ∼ O(h−2) = O(m1)
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ice sheet models: explicit time-stepping performance

time-stepping flops per model year

explicit SIA O
(

D L2

h 4

)
= O

(
D
L2 m 2

)

explicit (advective) Stokes O
(

U L2+2α

h 3+2α

)
= O

(
U
L

m1.5+α

)

(diffusive) Stokes O
(

D L2+2α

h 4+2α

)
= O

(
D
L2 m 2+α

)

we want optimality: O(m1) flops per model year
explicit time-stepping implies too many stress-balance solves
◦ while the Stokes (stress-balance) scaling exponent α is important,

even Stokes solver optimality (α = 0) cannot yield optimality
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implicit time-stepping for ice sheet models

let us try implicit time-stepping, for its unconditional stability
each step is now a free-boundary NCP-coupled-to-Stokes
problem
let us parameterize cost of these solves as O(m1+β)

we still need q model updates per year to integrate climate
influences, and track evolution for the simulation purpose
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ice sheet model performance table (Bueler, 2022)

time-stepping flops per model year

explicit SIA O
(

D L2

h 4

)
= O

(
D
L2 m 2

)

explicit (advective) Stokes O
(

U L2+2α

h 3+2α

)
= O

(
U
L

m1.5+α

)

(diffusive) Stokes O
(

D L2+2α

h 4+2α

)
= O

(
D
L2 m 2+α

)

implicit O
(

q L2+2β

h 2+2β

)
= O

(
q m1+β

)
new goal: use implicit time-stepping and build a β ≈ 0
NCP-coupled-to-Stokes solver for problem at each time step
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existing implicit models?

no convincing NCP-coupled-to-Stokes (free-boundary) solvers
exist yet
◦ however, Wirbel & Jarosch (2020) is an important beginning

the Bueler (2016) implicit and NCP SIA solver scales badly:
β = 0.8
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multilevel NCP-coupled-to-Stokes solvers

direct attack on the NCP-coupled-to-Stokes problem, to get an
optimal (β = 0) solver, seems to require a multilevel solver for
variational inequalities (VIs)
but in the non-local residual case
◦ application of the smoother needs to reduce the NCP residual from

the surface-motion term Φ(s) = −u|s · ns, where u|s is evaluated
from a scalable Stokes solver

this seems not to exist, but we are making progress . . .
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a new multilevel SIA solver (joint with P. Farrell)

FASCD
full approximation storage constraint decomposition
a multilevel method for box-constrained NCPs and VIs

in preparation, but here are fresh preliminary results . . .
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a new multilevel SIA solver (joint with P. Farrell)

results below show FASCD F-cycles
give optimal (β = 0) performance for
the SIA NCP problem
◦ iterations = number of V-cycles after

F-cycle “ramp”
◦ time is for 4-core runs on my laptop

levels m iterations time (s)
2 202 5 3.10
3 402 4 3.55
4 802 4 4.39
5 1602 4 7.12
6 3202 4 17.66
7 6402 5 69.92
8 12802 5 284.02
9 25602 4 1006.41
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summary

glacier simulations are both important to humanity and a rich
source of interesting mathematics
◦ predict sea level rise!

ice sheet models solve a multi-scale, irregular-data problem with
hard-to-observe boundary conditions
◦ there are no easy or magic techniques for performance

current-technology ice sheet models mostly use explicit time
stepping, non-optimal stress-balance solvers, and shallow
assumptions
◦ progress is being made in all of these areas, e.g. scalable Stokes

solvers (Isaac et al. 2015)
scalable solvers for implicit-step, NCP-coupled-to-Stokes models
require multilevel solvers for non-local variational inequalities
◦ is this the preferred numerical design for the basic glacier model?
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