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basic facts about glaciers

o glacier ice is a very viscous,

incompressible, non-Newtonian fluid Lt o
o more soon ... a R
o glaciers lie on topography
o except sometimes they float on P

water (floating tongue or ice shelf)

o a glacier's geometry (free surface),
and its velocity, evolve in contact with
the climate:

o snowfall

surface melt

subglacial melt

sub-shelf melt (when floating)

calving (into ocean)

[0}
o
[0}
[0}
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pictures of glaciers

Polaris Glacier (Post and LaChappelle 1971)
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pictures of glaciers

. . Rka &

Taku Glacier (M. Truffer 2016)
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pictures of glaciers

Columbia Glacier (Sentinel-2B 2018, National Geographic 1910)
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what is an ice sheet?

o def. ice sheet = a large glacier with small thickness/width ratio

Dome Fuji
*

Antarctic ice sheet (Pittard et al 2021)
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what is an ice sheet?

o def. ice sheet = a large glacier with small thickness /width ratio

East Antarctica

4,000 o -
E S _— Gamburtsev Subglacial — —_
= 2000 Mountains  Vostok Subglacial —
£ “ Ul Gunnerus Highlands
2 ["Bank
=]
© (MSL)0
>
2
w -2,000

t t t
Vertical exaggeration x80 Aurora Vincennes Astrolabe
Subglacial Basin Subglacial Basin Subglacial Basin

note smooth surface and rough bed .. .and vertical exaggeration
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what is an ice sheet?

o def. ice sheet = a large glacier with small thickness /width ratio

120000 21320 years ago. 0

temperature
change () o
7 SN N
. bt £ E
i
{ g e
R PR 5

(cm sea level
equivalent)

modeled Alpine ice sheet near last glacial maximum (Seguinot et al 2018)
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o def. ice sheet = a large glacier with small thickness/width ratio

Kog

| ¢ \ s

watin *‘IYJh.'?

LEMLIS ice margin
T34 (218 cal kaBP)
aflor Ty ot ol (2003, updated

250 500 km

o

Laurentide ice sheet, ~ 22,000 years ago (Margold, Stokes, Clark 2018)




what is an ice sheet?

o def. ice sheet = a large glacier with small thickness /width ratio

o
Shetbyville
L Indianapolis

moraines in lllinois, Indiana, Ohio (Larsen 1986 and other sources)
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finally, an ice sheet is not sea ice!

Russia

" Greenland
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basic facts about glaciers . ..again

o glacier ice is a very viscous,

incompressible, non-Newtonian fluid Lt o
o more soon ... a R
o glaciers lie on topography
o except sometimes they float on P

water (floating tongue or ice shelf)

o a glacier's geometry (free surface),
and its velocity, evolve in contact with
the climate:

o snowfall

surface melt

subglacial melt

sub-shelf melt (when floating)

calving (into ocean)

[0}
o
[0}
[0}

Ed Bueler (UAF) Glacial flows, simulated faster 8/43



modeling simplifications

o for simplicity/clarity of the upcoming model, | will ignore these
aspects of glacier physics in my talk:

floating ice

subglacial hydrology

ice temperature

fracture processes (e.g. calving)

solid earth deformation

[¢]

O O O O

@ all are important for doing science!

o UAF’s Parallel Ice Sheet Model (pism. io), for example, includes
these and other processes

Ed Bueler (UAF) Glacial flows, simulated faster 9/43
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what is a glacier model?

Definition
a glacier model is a map
which evolves a glacier in a climate o b N t '/
a s
o at least two inputs:
o surface mass balance b

alt x.y) = (snowfall minus)
melt & runoff
e units of mass flux: kgm—2s~"
o bed elevation b(x, y)
o at least two outputs:

o upper surface elevation s(t, x, y)
o ice velocity u(t, x,y, z)
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what is a glacier model?

Definition
a glacier model is a map
which evolves a glacier in a climate o b N t '/
a s
o at least two inputs:
o surface mass balance b

alt x.y) = (snowfall minus)
melt & runoff
e units of mass flux: kgm—2s~"
o bed elevation b(x, y)
o at least two outputs:

o upper surface elevation s(t, x, y)
o ice velocity u(t, x,y, z)

climate & geometry
topography & velocity

o map: (
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the basic glacier model: notation
o data a(t, x, y), b(x, y) are defined
on a fixed domain:

te[0,7T] and (x,y)eQCR?
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the basic glacier model: notation

o data a(t, x, y), b(x, y) are defined
on a fixed domain:

te[0,7T] and (x,y)eQCR?

o solution surface elevation
s(t, x,y) is defined on [0, T] x Q
o also a fixed domain,
o but s = b where there is no ice
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the basic glacier model: notation

o data a(t, x, y), b(x, y) are defined
on a fixed domain:

te[0,7T] and (x,y)eQCR?
o solution surface elevation
s(t, x,y) is defined on [0, T] x Q

o also a fixed domain,
o but s = b where there is no ice

o s(t, x,y) determines the icy
domain A(t) c R®:

ANt)=A{(x,y,2) : b(x,y) <z<s(t,x,y)}

o the solution velocity u(t, x, y, z)
is defined on A(t)

Ed Bueler (UAF) Glacial flows, simulated faster 11/43



the basic glacier model: conservation

@ glacier evolution is merely physics ... so it conserves

o mass
o momentum
o energy + ignored for simplicity in this talk
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the basic glacier model: conservation

@ glacier evolution is merely physics ... so it conserves

o mass
o momentum

o energy + ignored for simplicity in this talk

@ conservation of mass happens
o within the icy domain A(t) C R3:

incompressibility V-u=0

o on the surfaces Is(1), Mp(t) C OA(1):

surface kinematic equation (SKE) —Uuls-hg=a

gs
ot
non-penetration Uup-n,=0

> [s(t) is upper surface of the ice
> Tp(t) is base of the ice
> ns = (—Vs, 1) is upward surface normal

Ed Bueler (UAF) Glacial flows, simulated faster
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the free boundary problem for a fluid layer

o glacier evolution is a free-boundary problem
o specifically, the surface kinematic equation (SKE)

os uls-ng=a
at S s —

applies only on the ice upper surface I's(t)

@ in the remainder of the (fixed) domain Q c R?, complementarity
holds:

s=b and a<o0

@ for more on this perspective see Bueler (2021), Conservation laws for
free-boundary fluid layers, SIAM J. Appl. Math

Ed Bueler (UAF) Glacial flows, simulated faster 13/43



the basic glacier model strong form: NCP coupled to Stokes

@ nonlinear complementarity problem (NCP) :

s—b>0 on Q C R?

— —uls-hg—a>0

(s—b)(at—u]s-ns—a>—0 ”

o note: u|s = 0 where no ice

Ed Bueler (UAF) Glacial flows, simulated faster
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the basic glacier model strong form: NCP coupled to Stokes

@ nonlinear complementarity problem (NCP) coupled to Stokes:

s—b>0 on Q C R?
0s Y
a—u|s-ns—a20
0s »
(s—b)(at—u]s-ns—a> =0
— V- (2v(Du)Du) +Vp—pg =0 in A(f) c R®
V-u=0 ?
Tb—f(U’b):O on Fb(t)
Up-np,=0 ¥

(2v(Du)Du — pl)ns =0 on s(t)

o note: u|s = 0 where no ice
o viscosity by Glen law: 2v(Du) = I'|DulP~2, p ~ 4

Ed Bueler (UAF) Glacial flows, simulated faster 14/43



the basic glacier model is a DAE system

o for this slide, forget complementarity and boundary conditions to
get simplified model “SKE coupled to Stokes”:

0s
E—u|sn3_a:0
-V - (2v(Du) Du) +Vp—pig =0

V-u=0

o only the first of these 5 equations has a time derivative
o recall: ice is very viscous and incompressible
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the basic glacier model is a DAE system

o for this slide, forget complementarity and boundary conditions to
get simplified model “SKE coupled to Stokes”:

0s
a—u|sn3_a:0
-V - (2v(Du) Du) +Vp—pig =0

V-u=0
o only the first of these 5 equations has a time derivative
o recall: ice is very viscous and incompressible

o this time-dependent problem is a differential algebraic equation
(DAE), an extremely stiff system:

x=f(x,y)
0=g9(x,y)

o in oo dimensions, of course,
o and also subject to complementarity

Ed Bueler (UAF) Glacial flows, simulated faster 15/43



the basic glacier model: current research

o to the best of my knowledge, no current research groups are
studying well-posedness or regularity for this basic model

o though most researchers would agree NCP-coupled-to-Stokes is
indeed the intended model!
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the basic glacier model: current research

o to the best of my knowledge, no current research groups are
studying well-posedness or regularity for this basic model

o though most researchers would agree NCP-coupled-to-Stokes is
indeed the intended model!

@ progress has been made on well-posedness of the lubrication
approximation of the basic model, the so-called shallow ice
approximation:

o 1D well-posedness on flat bed (Calvo et al 2002)
o 2D steady-state existence on general beds (Jouvet & Bueler 2012)
o 2D well-posedness on flat bed (Piersanti & Temam 2022)

Ed Bueler (UAF) Glacial flows, simulated faster 16/43



the basic glacier model: current numerical thinking

@ numerical glacier and ice sheet modelers tend to think of the
Stokes problem separately from surface evolution

o time-splitting or explicit time-stepping is often taken for granted

@ ...and ice sheet geometry evolution is often addressed with
minimal awareness of complementarity

Ed Bueler (UAF) Glacial flows, simulated faster 17/43



the basic glacier model: current numerical thinking

@ numerical glacier and ice sheet modelers tend to think of the
Stokes problem separately from surface evolution
o time-splitting or explicit time-stepping is often taken for granted

@ ...and ice sheet geometry evolution is often addressed with
minimal awareness of complementarity

o the NCP-coupled-to-Stokes basic model is not yetin common use
for high-resolution, long-duration ice sheet simulations

o because it is too slow
o can we make it fast enough to use? <+ what | am working on

Ed Bueler (UAF) Glacial flows, simulated faster 17/43
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the mass-continuity equation view

o “thickness transport form” helps for evolution or stability questions
o define:

H(t,x,y)=s—-b ice thickness

S
U(t,x,y) = ’1‘//1) udz

o note s and H are equivalent variables for modeling ice geometry
o the mass continuity equation for thickness, an apparent
advection equation, follows from the SKE and incompressibility:
OH
at +

vertically-averaged
horizontal velocity

V-(UH)=a
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the mass-continuity equation view

o “thickness transport form” helps for evolution or stability questions
o define:

H(t,x,y)=s—-b ice thickness

S
Uit x,y) = ’1‘//1) udz

o note s and H are equivalent variables for modeling ice geometry
o the mass continuity equation for thickness, an apparent
advection equation, follows from the SKE and incompressibility:
OH
at +
@ question: is this really an advection equation?
answer: not really .. .ice flows (mostly) downhill so

U~ -Vs~ —-VH

@ in any case, the NCP-coupled-to-Stokes system has no

characteristic curves
Ed Bueler (UAF) Glacial flows, simulated faster 19/43
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horizontal velocity
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mass continuity equation: advection or diffusion?

oH

advective schema: B +V-(UH)=a
diffusion schema: 88/;/ —V-(DVs)=a

(%)

both forms are nonlinear: U = U(H,Vs), D= D(H,Vs)

the glacier modeling literature is confusing!

the diffusion schema is literal in the shallow ice approximation
o more on this momentarily

regardless of your schema preference, the fact that ice flows

downhill has time-stepping stability consequences!

o ...so let us recall some traditional numerical analysis

© ©

©
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traditional PDE time-stepping

advective schema: % +V-(UH)=a
diffusion schema: % —V-(DVs)=a

o explicit time stepping is common for advections
o for example, forward Euler using spacing h and time step At:

041 ¢ ¢ ol
A —H e _

At h !

o need good approximations of flux q = UH: upwinding,
Lax-Wendroff, streamline diffusion, flux-limiters, ...
o conditionally stable, with CFL maximum time step

h
max |U|

= o(h)
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traditional PDE time-stepping

oH

advective schema: ar +V.-(UH) =
diffusion schema: % —V-(DVs)=a

o explicit time stepping for diffusions is best avoided
o for example, forward Euler:
41 ¢
H - H Dy
At h?

( j+1 +s€) D

I~3

(sf + 3/{1)

o conditionally stable, with maximum time step

h2

At <
max D

= O(H?)

Ed Bueler (UAF) Glacial flows, simulated faster
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traditional PDE time-stepping

advective schema: % +V-(UH)=a
diffusion schema: % —V-(DVs)=a

o implicit time stepping for diffusions is often recommended
o for example, backward Euler:
+1 (41 l+1y
H*™ — Hf - Dy (s +87) =Dy

At h2 /

o unconditionally stable, but must solve equations at each step
o further implicit schemes: Crank-Nicolson, BDF, ...

Ed Bueler (UAF) Glacial flows, simulated faster 21/43



time-stepping in current ice sheet models

o current-technology, large-scale numerical models, including PISM,
use explicit time stepping
o this is embarrassing: the mathematical problem is a DAE
@ many researchers “believe” the advection schema
o time step is supposed to be determined by CFL using the coupled
solution velocity U
o the accuracy/performance/usability consequences of the
suppressed DAE/diffusive character are hard to sweep under the
rug

o the whole situation is a cry for mathematical clarity!

Ed Bueler (UAF) Glacial flows, simulated faster 22/43


https://www.pism.io/

time-stepping in future ice sheet models

o implicit time-stepping is appropriate for DAE problems
o future models will solve a sequence of NCP-coupled-to-Stokes
free-boundary problems at each time step

Ed Bueler (UAF) Glacial flows, simulated faster 23/43



1) introduction to glaciers and ice sheets
2) the basic mathematical model for glaciers
3) numerics: time-stepping
@ numerics: Stokes models
5) numerics: comparative performance analysis
6) a multilevel approach

79 conclusion



shallow ice approximation <« not Stokes

o the simplest of glacier flow approximations is the “lubrication”
approximation: shallow ice approximation (SIA)
o SIA version of the NCP:

s 0s
s—b>0, at+¢(s) a>0, (s b)<8t+¢(s) a> 0

the surface motion contribution ®(s) = —u|s - ns has a formula:

2 v 1 -2
d(s)=——(s—b)P|VsP -V - — b)Pt1|Vs|P
(5) =~ 2(s = bPIVsP ~ V- (7 (s - bP*VsP2Vs)

o constants p =n+ 1 and v > 0 relate to ice deformation

@ ®(s) is a doubly-nonlinear differential operator
o porous medium and p-Laplacian type simultaneously
o but local in surface and bed topography, which Stokes is not
o well-posedness holds for the weak form = variational inequality
(Calvo et al 2002, Jouvet & Bueler 2012, Piersanti & Temam 2022)
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nonlocality

o however, from now on, let us avoid shallowness approximations

o the basic glacier model (NCP coupled to Stokes) problem has a
non-local surface velocity function ®(s) = —uls - ns

s 0s
s—b>0, E+¢(s)—a20, (sb)<8t+¢(s)a>0
o the Stokes velocity solution responds to a surface perturbation by

up- and down-stream changes, for several ice thicknesses,
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nonlocality

o however, from now on, let us avoid shallowness approximations

o the basic glacier model (NCP coupled to Stokes) problem has a
non-local surface velocity function ®(s) = —uls - ns

0s s
—b> = - - = —a) =
s—b>0, T +d(s)—a>0, (s—b) <8t + d(s) a> 0
o the Stokes velocity solution responds to a surface perturbation by
up- and down-stream changes, for several ice thicknesses, while
the SIA velocity responds only underneath the surface
perturbation
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the Stokes problem for ice

@ a non-shallow model solves a Stokes problem at each step:

~V - (2v(Du)Du) + Vp—pig =0 in A c R®
V-u=0 ”
7 —f(ulp) =0 on
ujp-n,=0 ”
(2v(Du)Du — pl)ng =0 onTls

o this is the stress balance (conservation of momentum) problem
which determines velocity u and pressure p
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the Stokes problem for ice

@ a non-shallow model solves a Stokes problem at each step:

—V - (2v(Du) Du) +Vp—pig=0

V-u=0
7p — f(ulp) =0
u\b-nb:O

(2v(Du)Du — pl)ng =0

in A C R®

on Fb

onlg

o this is the stress balance (conservation of momentum) problem

which determines velocity u and pressure p
@ how fast is the numerical solution process?

o how do solution algorithms scale with increasing spatial resolution?

Ed Bueler (UAF) Glacial flows, simulated faster
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one slide course: numerical PDE solver algorithmic scaling

@ consider the Poisson equation:
~V2u=finQ, u=0o0ndQ

o discretization generates a linear system Au = b with u € R™
o the number of unknowns is the data size m:
o m = #(nodes in the mesh)
o m scales with mesh cell diameter: m~ h=2 in2D
o complexity or algorithmic scaling of flops, as m — oo, depends
on solver algorithm:

o O(m?®) for direct linear algebra, ignoring matrix structure
o a~ O(m?) for sparsity-exploiting direct linear algebra
o O(m'"), optimal, for multigrid solvers
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ice sheet models: stress-balance solver complexity

o Stokes: m = #(velocity and pressure unknowns)
o model the scaling as O(m'*+%), with o = 0 optimal
o near-optimal solvers already exist: + good news!

o a = 0.08 for Isaac et al. (2015) Stokes solver

> unstructured quadrilateral/tetrahedral mesh, Qx x Qx_» stable
elements, Schur-preconditioned Newton-Krylov, ice-column-oriented
algebraic multigrid (AMG) preconditioner for (u, u) block

o a = 0.05 for Tuminaro et al (2016) 1st-order (shallow) AMG solver
o similar for Brown et al (2013) 1st-order (shallow) GMG solver

@ but this is for Stokes solvers de-coupled from the
surface-evolution NCP
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ice sheet models: the analysis set-up

o ice sheets are thin layers, thus ice sheet models often have O(1)
mesh points in the vertical direction

o e.g. Issac et al (2015) Stokes solver
o | am ignoring refinement in the vertical

o data size: m = #(surface elevation & velocity & pressure unknowns)
o assume domain Q C R? with width L and cell diameter h:

12 Th
~he L

m

o recall explicit time-stepping stability:

. oH h

- . — < —

advective T +V-(UH)=a = At < U
diffusion %’7 —V-(DVs)=a = At < D

o recall stress-balance solver complexity: ~ O(m'*+<)
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ice sheet models: the performance question

o glaciologists want to run time-stepping high-resolution simulations
of ice sheets over e.g. 10° year ice age cycles

o proposed metric:  flops per model year

@ the question:

how does this metric scale in the high spatial resolution
limit h — 0, equivalently m — c0?

o the goal is optimality: flops ~ O(h=2) = O(m")
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ice sheet models: explicit time-stepping performance

time-stepping flops per model year
. DL? D ,
242«
explicit (advective) ~Stokes o} <%+Za> =0 <Lij1'5+a)
24+2a
(diffusive)  Stokes o) (iiym) =0 <3m2+a>

o we want optimality: ~ O(m') flops per model year
o explicit time-stepping implies too many stress-balance solves

o while the Stokes (stress-balance) scaling exponent « is important,
even Stokes solver optimality (o« = 0) cannot yield optimality
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implicit time-stepping for ice sheet models

o let us try implicit time-stepping, for its unconditional stability

@ each step is now a free-boundary NCP-coupled-to-Stokes
problem

o let us parameterize cost of these solves as O(m'*#)

o we still need g model updates per year to integrate climate
influences, and track evolution for the simulation purpose
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ice sheet model performance table (Bueler, 2022)

time-stepping flops per model year
. D2 D ,

explicit SIA 0] e ) = (0] pm
24+2a

explicit (advective) ~Stokes o} (%) =0 (lem1'5+a>
242«

(diffusive)  Stokes o) <Dhi+2a) =0 (gm2+°‘>
L L2+28
implicit o] (W) =0 <q m1+5)

@ new goal: use implicit time-stepping and builda 3 ~ 0
NCP-coupled-to-Stokes solver for problem at each time step
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existing implicit models?

@ no convincing NCP-coupled-to-Stokes (free-boundary) solvers
exist yet
o however, Wirbel & Jarosch (2020) is an important beginning
o the Bueler (2016) implicit and NCP SIA solver scales badly:
8 =0.8
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multilevel NCP-coupled-to-Stokes solvers

o direct attack on the NCP-coupled-to-Stokes problem, to get an
optimal (8 = 0) solver, seems to require a multilevel solver for
variational inequalities (VIs)

o but in the non-local residual case

o application of the smoother needs to reduce the NCP residual from
the surface-motion term ®(s) = —u|s - ng, where u|; is evaluated
from a scalable Stokes solver

o this seems not to exist, but we are making progress . ..
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a new multilevel SIA solver (joint with P. Farrell)

FASCD

full approximation storage constraint decomposition
a multilevel method for box-constrained NCPs and Vs

o in preparation, but here are fresh preliminary results . ..
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a new multilevel SIA solver (joint with P. Farrell)

@ results below show FASCD F-cycles
give optimal (8 = 0) performance for

the SIA NCP problem

o jterations = number of V-cycles after
F-cycle “ramp”
o timeis for 4-core runs on my laptop

Ed Bueler (UAF)

levels m | iterations | time (s)
2 202 5 3.10
3 402 4 3.55
4 802 4 4.39
5 1602 4 7.12
6 3202 4 17.66
7 6402 5 69.92
8 12802 5 284.02
9 25602 4 1006.41

Glacial flows, simulated faster
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summary

o glacier simulations are both important to humanity and a rich
source of interesting mathematics

o predict sea level rise!
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summary

o glacier simulations are both important to humanity and a rich
source of interesting mathematics

o predict sea level rise!

o ice sheet models solve a multi-scale, irregular-data problem with
hard-to-observe boundary conditions

o there are no easy or magic techniques for performance
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summary

o glacier simulations are both important to humanity and a rich
source of interesting mathematics

o predict sea level rise!
o ice sheet models solve a multi-scale, irregular-data problem with
hard-to-observe boundary conditions
o there are no easy or magic techniques for performance

o current-technology ice sheet models mostly use explicit time
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o predict sea level rise!

o ice sheet models solve a multi-scale, irregular-data problem with
hard-to-observe boundary conditions

o there are no easy or magic techniques for performance

o current-technology ice sheet models mostly use explicit time
stepping, non-optimal stress-balance solvers, and shallow
assumptions

o progress is being made in all of these areas, e.g. scalable Stokes
solvers (Isaac et al. 2015)

@ scalable solvers for implicit-step, NCP-coupled-to-Stokes models
require multilevel solvers for non-local variational inequalities

o is this the preferred numerical design for the basic glacier model?
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