

Outline

- (2) the basic mathematical model for glaciers
- 3 numerics: time-stepping
- 4 numerics: Stokes models
- 5 numerics: comparative performance analysis
- 6 a multilevel approach

conclusion

 glacier ice is a very viscous, incompressible, non-Newtonian fluid

more soon ...

- glaciers lie on topography
 - except sometimes they float on water (floating tongue or ice shelf)
- a glacier's geometry (free surface), and its velocity, evolve in contact with the climate:
 - snowfall
 - surface melt
 - o subglacial melt
 - o sub-shelf melt (when floating)
 - calving (into ocean)

pictures of glaciers

Polaris Glacier

(Post and LaChappelle 1971)

Ed Bueler (UAF)

Glacial flows, simulated faster

pictures of glaciers

Taku Glacier

(M. Truffer 2016)

Ed Bueler (UAF)

pictures of glaciers

Columbia Glacier

(Sentinel-2B 2018, National Geographic 1910)

Ed Bueler (UAF)

Glacial flows, simulated faster

• def. ice sheet = a large glacier with small thickness/width ratio

Antarctic ice sheet

(Pittard et al 2021)

• *def.* ice sheet = a large glacier with small thickness/width ratio

note smooth surface and rough bed ... and vertical exaggeration (Sc

(Schoof & Hewitt 2013)

• def. ice sheet = a large glacier with small thickness/width ratio

modeled Alpine ice sheet near last glacial maximum

(Seguinot et al 2018)

• *def.* ice sheet = a large glacier with small thickness/width ratio

Laurentide ice sheet, \approx 22,000 years ago

(Margold, Stokes, Clark 2018)

• *def.* ice sheet = a large glacier with small thickness/width ratio

moraines in Illinois, Indiana, Ohio

(Larsen 1986 and other sources)

finally, an ice sheet is not sea ice!

Outline

- (2) the basic mathematical model for glaciers
 - 3 numerics: time-stepping
 - 4 numerics: Stokes models
- 5 numerics: comparative performance analysis
- 6 a multilevel approach

conclusion

 glacier ice is a very viscous, incompressible, non-Newtonian fluid

more soon . . .

- glaciers lie on topography
 - except sometimes they float on water (floating tongue or ice shelf)
- a glacier's geometry (free surface), and its velocity, evolve in contact with the climate:
 - snowfall
 - surface melt
 - subglacial melt
 - o sub-shelf melt (when floating)
 - calving (into ocean)

- for simplicity/clarity of the upcoming model, I will ignore these aspects of glacier physics in my talk:
 - \circ floating ice
 - subglacial hydrology
 - o ice temperature
 - fracture processes (e.g. calving)
 - solid earth deformation
- all are important for doing science!
- UAF's Parallel Ice Sheet Model (pism.io), for example, includes these and other processes

what is a glacier model?

Definition a **glacier model** is a <u>map</u> which evolves a glacier in a climate

- at least two inputs:
 - surface mass balance

$$a(t, x, y) = \begin{pmatrix} \text{snowfall minus} \\ \text{melt & runoff} \end{pmatrix}$$

- units of mass flux: $kg m^{-2}s^{-1}$
- bed elevation b(x, y)

at least two outputs:

- upper surface elevation s(t, x, y)
- ice velocity $\mathbf{u}(t, x, y, z)$

what is a glacier model?

Definition a **glacier model** is a <u>map</u> which evolves a glacier in a climate

- at least two inputs:
 - surface mass balance

$$a(t, x, y) = \begin{pmatrix} \text{snowfall minus} \\ \text{melt & runoff} \end{pmatrix}$$

- units of mass flux: kg m⁻²s⁻¹
- bed elevation b(x, y)
- at least two outputs:
 - \circ upper surface elevation s(t, x, y)
 - ice velocity $\mathbf{u}(t, x, y, z)$

• map:
$$\begin{pmatrix} \text{climate &} \\ \text{topography} \end{pmatrix} \rightarrow \begin{pmatrix} \text{geometry} \\ \text{& velocity} \end{pmatrix}$$

• † • + L

u

data a(t, x, y), b(x, y) are defined on a fixed domain:

$t \in [0, T]$ and $(x, y) \in \Omega \subset \mathbb{R}^2$

• solution **surface elevation** s(t, x, y) is defined on $[0, T] \times \Omega$

- also a fixed domain,
- but s = b where there is no ice
- s(t, x, y) determines the icy domain Λ(t) ⊂ ℝ³:

$$\Lambda(t) = \{ (x, y, z) : b(x, y) < z < s(t, x, y) \}$$

the solution velocity u(t, x, y, z) is defined on Λ(t)

- data a(t, x, y), b(x, y) are defined on a fixed domain:
 - $t \in [0, T]$ and $(x, y) \in \Omega \subset \mathbb{R}^2$
- solution surface elevation
 s(t, x, y) is defined on [0, T] × Ω
 - also a fixed domain,
 - but s = b where there is no ice
- s(t, x, y) determines the icy domain Λ(t) ⊂ ℝ³:

- $\Lambda(t) = \{ (x, y, z) : b(x, y) < z < s(t, x, y) \}$
- the solution velocity u(t, x, y, z) is defined on Λ(t)

- data a(t, x, y), b(x, y) are defined on a fixed domain:
 - $t \in [0, T]$ and $(x, y) \in \Omega \subset \mathbb{R}^2$
- solution surface elevation
 s(t, x, y) is defined on [0, T] × Ω
 - also a fixed domain,
 - \circ but s = b where there is no ice
- s(t, x, y) determines the icy domain Λ(t) ⊂ ℝ³:

$$\Lambda(t) = \{ (x, y, z) : b(x, y) < z < s(t, x, y) \}$$

the solution velocity u(t, x, y, z) is defined on Λ(t)

the basic glacier model: conservation

- glacier evolution is merely physics ... so it conserves
 - mass
 - momentum
 - energy

 \leftarrow ignored for simplicity in this talk

conservation of mass happens
 o within the icy domain Λ(t) ⊂ ℝ³:

incompressibility $\nabla \cdot \mathbf{u} = 0$ in $\Lambda(t)$

• on the surfaces $\Gamma_s(t), \Gamma_b(t) \subset \partial \Lambda(t)$:

 $\frac{\partial s}{\partial t} - \mathbf{u}|_{s} \cdot \mathbf{n}_{s} = a \qquad \text{on } \Gamma_{s}(t)$ $\mathbf{u}|_{b} \cdot \mathbf{n}_{b} = 0 \qquad \text{on } \Gamma_{b}(t)$

surface kinematic equation (SKE) $\frac{\partial s}{\partial t}$ non-penetration

- $\triangleright \Gamma_s(t)$ is upper surface of the ice
- $\triangleright \Gamma_b(t)$ is base of the ice
- \triangleright **n**_s = $\langle -\nabla s, 1 \rangle$ is upward surface normal

the basic glacier model: conservation

- glacier evolution is merely physics ... so it conserves
 - mass
 - momentum
 - energy

 \leftarrow ignored for simplicity in this talk

- conservation of mass happens
 - within the icy domain $\Lambda(t) \subset \mathbb{R}^3$:

incompressibility $\nabla \cdot \mathbf{u} = 0$ in $\Lambda(t)$

• on the surfaces $\Gamma_s(t), \Gamma_b(t) \subset \partial \Lambda(t)$:

 $\frac{\partial s}{\partial t} - \mathbf{u}|_{s} \cdot \mathbf{n}_{s} = a$ surface kinematic equation (SKE)

non-penetration

on Γ_s(t)

 $\mathbf{u}|_{h} \cdot \mathbf{n}_{h} = 0$ on $\Gamma_{b}(t)$

- \succ $\Gamma_s(t)$ is upper surface of the ice
- $\triangleright \Gamma_{b}(t)$ is base of the ice
- \triangleright **n**_s = $\langle -\nabla s, 1 \rangle$ is upward surface normal

- glacier evolution is a free-boundary problem
- specifically, the surface kinematic equation (SKE)

$$\frac{\partial s}{\partial t} - \mathbf{u}|_{s} \cdot \mathbf{n}_{s} = a$$

applies only on the ice upper surface $\Gamma_s(t)$

in the remainder of the (fixed) domain Ω ⊂ ℝ², complementarity holds:

$$s = b$$
 and $a \leq 0$

 for more on this perspective see Bueler (2021), Conservation laws for free-boundary fluid layers, SIAM J. Appl. Math • nonlinear complementarity problem (NCP) :

$$s - b \ge 0 \qquad \text{on } \Omega \subset \mathbb{R}^2$$

$$\frac{\partial s}{\partial t} - \mathbf{u}|_s \cdot \mathbf{n}_s - a \ge 0 \qquad "$$

$$(s - b) \left(\frac{\partial s}{\partial t} - \mathbf{u}|_s \cdot \mathbf{n}_s - a\right) = 0 \qquad "$$

$$-\nabla \cdot (2\nu(D\mathbf{u}) D\mathbf{u}) + \nabla p - \rho_i \mathbf{g} = \mathbf{0} \qquad \text{in } \Lambda(t) \subset \mathbb{R}^3$$

$$\nabla \cdot \mathbf{u} = \mathbf{0} \qquad "$$

$$\tau_b - \mathbf{f}(\mathbf{u}|_b) = \mathbf{0} \qquad \text{on } \Gamma_b(t)$$

$$\mathbf{u}|_b \cdot \mathbf{n}_b = \mathbf{0} \qquad "$$

$$(2\nu(D\mathbf{u}) D\mathbf{u} - pl) \mathbf{n}_s = \mathbf{0} \qquad \text{on } \Gamma_s(t)$$

• note: $\mathbf{u}|_{s} = \mathbf{0}$ where no ice • viscosity by Glen law: $2\nu(D\mathbf{u}) = \Gamma |D\mathbf{u}|^{p-2}, \ p \approx 4$ on nonlinear complementarity problem (NCP) coupled to Stokes:

$$s - b \ge 0 \qquad \text{on } \Omega \subset \mathbb{R}^2$$

$$\frac{\partial s}{\partial t} - \mathbf{u}|_s \cdot \mathbf{n}_s - a \ge 0 \qquad "$$

$$(s - b) \left(\frac{\partial s}{\partial t} - \mathbf{u}|_s \cdot \mathbf{n}_s - a\right) = 0 \qquad "$$

$$-\nabla \cdot (2\nu(D\mathbf{u}) D\mathbf{u}) + \nabla p - \rho_l \mathbf{g} = \mathbf{0} \qquad \text{in } \Lambda(t) \subset \mathbb{R}^3$$

$$\nabla \cdot \mathbf{u} = 0 \qquad "$$

$$\tau_b - \mathbf{f}(\mathbf{u}|_b) = \mathbf{0} \qquad \text{on } \Gamma_b(t)$$

$$\mathbf{u}|_b \cdot \mathbf{n}_b = 0 \qquad "$$

$$(2\nu(D\mathbf{u}) D\mathbf{u} - pl) \mathbf{n}_s = \mathbf{0} \qquad \text{on } \Gamma_s(t)$$

• note: $\mathbf{u}|_{s} = 0$ where no ice

 \circ viscosity by Glen law: $2\nu(D\mathbf{u}) = \Gamma |D\mathbf{u}|^{p-2}, \ p \approx 4$

the basic glacier model is a DAE system

 for this slide, forget complementarity and boundary conditions to get simplified model "SKE coupled to Stokes":

$$\frac{\partial s}{\partial t} - \mathbf{u}|_{s} \cdot \mathbf{n}_{s} - a = 0$$
$$-\nabla \cdot (2\nu(D\mathbf{u}) D\mathbf{u}) + \nabla p - \rho_{i}\mathbf{g} = \mathbf{0}$$
$$\nabla \cdot \mathbf{u} = 0$$

- only the first of these 5 equations has a time derivative
 o recall: ice is very viscous and incompressible
- this time-dependent problem is a **differential algebraic equation** (DAE), an extremely stiff system:

$$\dot{x} = f(x, y)$$
$$0 = g(x, y)$$

- \circ in ∞ dimensions, of course,
- and also subject to complementarity

the basic glacier model is a DAE system

 for this slide, forget complementarity and boundary conditions to get simplified model "SKE coupled to Stokes":

$$\frac{\partial s}{\partial t} - \mathbf{u}|_{s} \cdot \mathbf{n}_{s} - a = 0$$
$$-\nabla \cdot (2\nu(D\mathbf{u}) D\mathbf{u}) + \nabla p - \rho_{i}\mathbf{g} = \mathbf{0}$$
$$\nabla \cdot \mathbf{u} = 0$$

- only the first of these 5 equations has a time derivative
 o recall: ice is very viscous and incompressible
- this time-dependent problem is a differential algebraic equation (DAE), an extremely stiff system:

$$\dot{x} = f(x, y)$$

 $0 = g(x, y)$

- $\circ~$ in ∞ dimensions, of course,
- and also subject to complementarity

the basic glacier model: current research

- to the best of my knowledge, no current research groups are studying well-posedness or regularity for this basic model
 - though most researchers would agree NCP-coupled-to-Stokes is indeed the intended model!
- progress has been made on well-posedness of the lubrication approximation of the basic model, the so-called shallow ice approximation:
 - 1D well-posedness on flat bed (Calvo et al 2002)
 - 2D steady-state existence on general beds (Jouvet & Bueler 2012)
 - 2D well-posedness on flat bed (Piersanti & Temam 2022)

the basic glacier model: current research

- to the best of my knowledge, no current research groups are studying well-posedness or regularity for this basic model
 - though most researchers would agree NCP-coupled-to-Stokes is indeed the intended model!
- progress has been made on well-posedness of the lubrication approximation of the basic model, the so-called shallow ice approximation:
 - 1D well-posedness on flat bed (Calvo et al 2002)
 - 2D steady-state existence on general beds (Jouvet & Bueler 2012)
 - 2D well-posedness on flat bed (Piersanti & Temam 2022)

the basic glacier model: current numerical thinking

- numerical glacier and ice sheet modelers tend to think of the Stokes problem separately from surface evolution
 time-splitting or *explicit time-stepping* is often taken for granted
- ... and ice sheet geometry evolution is often addressed with minimal awareness of complementarity
- the NCP-coupled-to-Stokes basic model is *not yet* in common use for high-resolution, long-duration ice sheet simulations
 - because it is too slow
 - \circ can we make it fast enough to use? \leftarrow what I am working on

the basic glacier model: current numerical thinking

- numerical glacier and ice sheet modelers tend to think of the Stokes problem separately from surface evolution
 time-splitting or *explicit time-stepping* is often taken for granted
- ... and ice sheet geometry evolution is often addressed with minimal awareness of complementarity
- the NCP-coupled-to-Stokes basic model is *not yet* in common use for high-resolution, long-duration ice sheet simulations
 - $\circ~$ because it is too slow
 - can we make it fast enough to use? ← what I am working on

Outline

2) the basic mathematical model for glaciers

3 numerics: time-stepping

- 4 numerics: Stokes models
- 5 numerics: comparative performance analysis
- 6 a multilevel approach

conclusion

the mass-continuity equation view

"thickness transport form" helps for evolution or stability questions
define:

$$H(t, x, y) = s - b$$
$$\mathbf{U}(t, x, y) = \frac{1}{H} \int_{b}^{s} \mathbf{u} \, dz$$

ice thickness vertically-averaged horizontal velocity

 note *s* and *H* are equivalent variables for modeling ice geometry
 the mass continuity equation for thickness, an apparent advection equation, follows from the SKE and incompressibility:

$$\frac{\partial H}{\partial t} + \nabla \cdot (\mathbf{U}H) = \mathbf{a}$$

 question: is this really an advection equation? answer: not really ... ice flows (mostly) downhill so

 $\mathbf{U}\sim abla s\sim abla H$

• in any case, the NCP-coupled-to-Stokes system has no characteristic curves

Ed Bueler (UAF)

the mass-continuity equation view

"thickness transport form" helps for evolution or stability questions
define:

$$H(t, x, y) = s - b$$
$$U(t, x, y) = \frac{1}{H} \int_{b}^{s} u \, dz$$

ice thickness vertically-averaged horizontal velocity

 note *s* and *H* are equivalent variables for modeling ice geometry
 the mass continuity equation for thickness, an apparent advection equation, follows from the SKE and incompressibility:

$$\frac{\partial H}{\partial t} + \nabla \cdot (\mathbf{U}H) = \mathbf{a}$$

 question: is this really an advection equation? answer: not really ... ice flows (mostly) downhill so

$$\bm{U}\sim -\nabla\bm{s}\sim -\nabla H$$

 in any case, the NCP-coupled-to-Stokes system has no characteristic curves

Ed Bueler (UAF)

mass continuity equation: advection or diffusion?

advective schema: $\frac{\partial H}{\partial t} + \nabla \cdot (\mathbf{U}H) = a$ diffusion schema: $\frac{\partial H}{\partial t} - \nabla \cdot (D\nabla s) = a$

- both forms are nonlinear: $\mathbf{U} = \mathbf{U}(H, \nabla s), D = D(H, \nabla s)$
- the glacier modeling literature is confusing!
- the diffusion schema is literal in the shallow ice approximation
 o more on this momentarily
- regardless of your schema preference, the fact that ice flows downhill has *time-stepping stability* consequences!
- ... so let us recall some traditional numerical analysis

advective schema:	$\frac{\partial H}{\partial t} + \nabla \cdot (\mathbf{U}H) = \mathbf{a}$
diffusion schema:	$\frac{\partial H}{\partial t} - \nabla \cdot (D\nabla s) = a$

- explicit time stepping is common for advections
- for example, forward Euler using spacing *h* and time step Δt :

$$\frac{H_{j}^{\ell+1} - H_{j}^{\ell}}{\Delta t} + \frac{\mathbf{q}_{j+1/2}^{\ell} - \mathbf{q}_{j-1/2}^{\ell}}{h} = a_{j}^{\ell}$$

- need good approximations of flux **q** = **U***H*: upwinding, Lax-Wendroff, streamline diffusion, flux-limiters, ...
- $\circ~$ conditionally stable, with CFL maximum time step

$$\Delta t \leq rac{h}{\max |\mathbf{U}|} = O(h)$$

explicit time stepping for diffusions is best avoided
for example, forward Euler:

$$\frac{H_{j}^{\ell+1} - H_{j}^{\ell}}{\Delta t} - \frac{D_{j+\frac{1}{2}}(s_{j+1}^{\ell} + s_{j}^{\ell}) - D_{j-\frac{1}{2}}(s_{j}^{\ell} + s_{j-1}^{\ell})}{h^{2}} = a_{j}^{\ell}$$

 $\circ~$ conditionally stable, with maximum time step

$$\Delta t \leq rac{h^2}{\max D} = O(h^2)$$

advective schema:	$rac{\partial H}{\partial t} + abla \cdot (\mathbf{U}H) = \mathbf{a}$
diffusion schema:	$\frac{\partial H}{\partial t} - \nabla \cdot (D\nabla s) = a$

implicit time stepping for diffusions is often recommended
for example, backward Euler:

$$\frac{H_{j}^{\ell+1} - H_{j}^{\ell}}{\Delta t} - \frac{D_{j+\frac{1}{2}}(s_{j+1}^{\ell+1} + s_{j}^{\ell+1}) - D_{j-\frac{1}{2}}(s_{j}^{\ell+1} + s_{j-1}^{\ell+1})}{h^{2}} = a_{j}^{\ell}$$

- unconditionally stable, but must solve equations at each step
- further implicit schemes: Crank-Nicolson, BDF, ...

time-stepping in current ice sheet models

- current-technology, large-scale numerical models, including PISM, use explicit time stepping
 - this is embarrassing: the mathematical problem is a DAE
- many researchers "believe" the advection schema
 - $\circ~$ time step is supposed to be determined by CFL using the coupled solution velocity ${\bf U}$
- the accuracy/performance/usability consequences of the suppressed DAE/diffusive character are hard to sweep under the rug
- the whole situation is a cry for mathematical clarity!

- **implicit time-stepping** is appropriate for DAE problems
- future models will solve a sequence of NCP-coupled-to-Stokes free-boundary problems at each time step

Outline

- 1 introduction to glaciers and ice sheets
- 2 the basic mathematical model for glaciers
- 3 numerics: time-stepping
- 4 numerics: Stokes models
 - 5 numerics: comparative performance analysis
 - 6 a multilevel approach

conclusion

- the simplest of glacier flow approximations is the "lubrication" approximation: shallow ice approximation (SIA)
- SIA version of the NCP:

$$s-b \ge 0$$
, $\frac{\partial s}{\partial t} + \Phi(s) - a \ge 0$, $(s-b)\left(\frac{\partial s}{\partial t} + \Phi(s) - a\right) = 0$

the surface motion contribution $\Phi(s) = -\mathbf{u}|_s \cdot \mathbf{n}_s$ has a formula:

$$\Phi(s) = -rac{\gamma}{\mathsf{p}}(s-b)^{\mathsf{p}}|
abla s|^{\mathsf{p}} -
abla \cdot \left(rac{\gamma}{\mathsf{p}+\mathsf{1}}(s-b)^{\mathsf{p}+\mathsf{1}}|
abla s|^{\mathsf{p}-2}
abla s
ight)$$

 $\circ~$ constants p=n+1~and $\gamma>0~$ relate to ice deformation

• $\Phi(s)$ is a doubly-nonlinear differential operator

- porous medium and p-Laplacian type simultaneously
- o but local in surface and bed topography, which Stokes is not
- well-posedness holds for the weak form = variational inequality (Calvo et al 2002, Jouvet & Bueler 2012, Piersanti & Temam 2022)

nonlocality

- however, from now on, let us avoid shallowness approximations
- the basic glacier model (NCP coupled to Stokes) problem has a non-local surface velocity function Φ(s) = -u|_s · n_s

$$s-b \ge 0, \quad rac{\partial s}{\partial t} + \Phi(s) - a \ge 0, \quad (s-b)\left(rac{\partial s}{\partial t} + \Phi(s) - a
ight) = 0$$

 the Stokes velocity solution responds to a surface perturbation by up- and down-stream changes, for several ice thicknesses, while the SIA velocity responds only underneath the surface perturbation

nonlocality

- however, from now on, let us avoid shallowness approximations
- the basic glacier model (NCP coupled to Stokes) problem has a non-local surface velocity function Φ(s) = -u|_s · n_s

$$s-b \ge 0, \quad rac{\partial s}{\partial t} + \Phi(s) - a \ge 0, \quad (s-b)\left(rac{\partial s}{\partial t} + \Phi(s) - a
ight) = 0$$

 the Stokes velocity solution responds to a surface perturbation by up- and down-stream changes, for several ice thicknesses, while the SIA velocity responds only underneath the surface perturbation

a non-shallow model solves a Stokes problem at each step:

$$\begin{aligned} -\nabla \cdot (2\nu(D\mathbf{u}) \, D\mathbf{u}) + \nabla p - \rho_{i}\mathbf{g} &= \mathbf{0} & \text{in } \Lambda \subset \mathbb{R}^{3} \\ \nabla \cdot \mathbf{u} &= \mathbf{0} & \text{"} \\ \boldsymbol{\tau}_{b} - \mathbf{f}(\mathbf{u}|_{b}) &= \mathbf{0} & \text{on } \Gamma_{b} \\ \mathbf{u}|_{b} \cdot \mathbf{n}_{b} &= \mathbf{0} & \text{"} \\ (2\nu(D\mathbf{u}) D\mathbf{u} - \rho I) \, \mathbf{n}_{s} &= \mathbf{0} & \text{on } \Gamma_{s} \end{aligned}$$

 this is the stress balance (conservation of momentum) problem which determines velocity u and pressure p

• how fast is the numerical solution process?

o how do solution algorithms scale with increasing spatial resolution?

a non-shallow model solves a Stokes problem at each step:

$$\begin{aligned} -\nabla \cdot (2\nu(D\mathbf{u}) \, D\mathbf{u}) + \nabla p - \rho_{i}\mathbf{g} &= \mathbf{0} & \text{in } \Lambda \subset \mathbb{R}^{3} \\ \nabla \cdot \mathbf{u} &= \mathbf{0} & \text{"} \\ \boldsymbol{\tau}_{b} - \mathbf{f}(\mathbf{u}|_{b}) &= \mathbf{0} & \text{on } \Gamma_{b} \\ \mathbf{u}|_{b} \cdot \mathbf{n}_{b} &= \mathbf{0} & \text{"} \\ (2\nu(D\mathbf{u}) D\mathbf{u} - pl) \, \mathbf{n}_{s} &= \mathbf{0} & \text{on } \Gamma_{s} \end{aligned}$$

- this is the stress balance (conservation of momentum) problem which determines velocity u and pressure p
- how fast is the numerical solution process?
 - o how do solution algorithms scale with increasing spatial resolution?

o consider the Poisson equation:

$$-
abla^2 u = f ext{ in } \Omega, \qquad u = 0 ext{ on } \partial \Omega$$

- discretization generates a linear system $A \mathbf{u} = \mathbf{b}$ with $\mathbf{u} \in \mathbb{R}^m$
- the number of unknowns is the data size *m*:
 - m = #(nodes in the mesh)
 - $\circ~m$ scales with mesh cell diameter: $m \sim h^{-2}$ in 2D
- complexity or algorithmic scaling of flops, as m→∞, depends on solver algorithm:
 - $\circ O(m^3)$ for direct linear algebra, ignoring matrix structure
 - $\circ ~ pprox {\it O}(m^2)$ for sparsity-exploiting direct linear algebra
 - $O(m^1)$, optimal, for multigrid solvers

ice sheet models: stress-balance solver complexity

- Stokes: *m* = #(velocity and pressure unknowns)
- model the scaling as $O(m^{1+\alpha})$, with $\alpha = 0$ optimal
- - $\circ~\alpha=$ 0.08 for Isaac et al. (2015) Stokes solver
 - ▷ unstructured quadrilateral/tetrahedral mesh, $Q_k \times Q_{k-2}$ stable elements, Schur-preconditioned Newton-Krylov, ice-column-oriented algebraic multigrid (AMG) preconditioner for (\mathbf{u}, \mathbf{u}) block

- $\circ \alpha =$ 0.05 for Tuminaro et al (2016) 1st-order (shallow) AMG solver
- $\circ~$ similar for Brown et al (2013) 1st-order (shallow) GMG solver
- but this is for Stokes solvers de-coupled from the surface-evolution NCP

Outline

- 1 introduction to glaciers and ice sheets
- 2 the basic mathematical model for glaciers
- 3 numerics: time-stepping
- 4 numerics: Stokes models
- 5 numerics: comparative performance analysis
 - 6 a multilevel approach

conclusion

ice sheet models: the analysis set-up

- ice sheets are thin layers, thus ice sheet models often have O(1) mesh points in the vertical direction
 - o e.g. Issac et al (2015) Stokes solver
 - o I am ignoring refinement in the vertical
- data size: *m* = #(surface elevation & velocity & pressure unknowns)
- assume domain $\Omega \subset \mathbb{R}^2$ with width *L* and cell diameter *h*:

$$m \sim rac{L^2}{h^2}$$

 $O(m^{1+\alpha})$

• recall explicit time-stepping stability:

advective
$$\frac{\partial H}{\partial t} + \nabla \cdot (\mathbf{U}H) = a$$
 \Longrightarrow $\Delta t \leq \frac{h}{U}$ diffusion $\frac{\partial H}{\partial t} - \nabla \cdot (D\nabla s) = a$ \Longrightarrow $\Delta t \leq \frac{h^2}{D}$

recall stress-balance solver complexity:

- glaciologists want to run time-stepping high-resolution simulations of ice sheets over e.g. 10⁵ year ice age cycles
- proposed metric: flops per model year
- the question:

how does this metric scale in the high spatial resolution limit $h \rightarrow 0$, equivalently $m \rightarrow \infty$?

• the goal is optimality: flops $\sim O(h^{-2}) = O(m^1)$

ice sheet models: explicit time-stepping performance

time-stepping		flops per model year	
explicit	SIA	$O\left(\frac{DL^2}{h^4}\right) = O\left(\frac{D}{L^2}m^2\right)$	
explicit (advective)	Stokes	$O\left(\frac{UL^{2+2\alpha}}{h^{3+2\alpha}}\right) = O\left(\frac{U}{L}m^{1.5+\alpha}\right)$	
(diffusive)	Stokes	$O\left(\frac{DL^{2+2\alpha}}{h^{4+2\alpha}}\right) = O\left(\frac{D}{L^2}m^{2+\alpha}\right)$	

- we want optimality: $O(m^1)$ flops per model year
- explicit time-stepping implies too many stress-balance solves
 - while the Stokes (stress-balance) scaling exponent α is important, even Stokes solver optimality ($\alpha = 0$) cannot yield optimality

- let us try implicit time-stepping, for its unconditional stability
- each step is now a free-boundary NCP-coupled-to-Stokes problem
- let us parameterize cost of these solves as $O(m^{1+\beta})$
- we still need *q* model updates per year to integrate climate influences, and track evolution for the simulation purpose

ice sheet model performance table (Bueler, 2022)

time-stepping		flops per model year
explicit	SIA	$O\left(\frac{DL^2}{h^4}\right) = O\left(\frac{D}{L^2}m^2\right)$
explicit (advective)	Stokes	$O\left(\frac{UL^{2+2\alpha}}{h^{3+2\alpha}}\right) = O\left(\frac{U}{L}m^{1.5+\alpha}\right)$
(diffusive)	Stokes	$O\left(rac{DL^{2+2lpha}}{h^{4+2lpha}} ight) = O\left(rac{D}{L^2}m^{2+lpha} ight)$
implicit		$O\left(\frac{qL^{2+2\beta}}{h^{2+2\beta}}\right)=O\left(qm^{1+\beta}\right)$

• new goal: use implicit time-stepping and build a $\beta \approx 0$ NCP-coupled-to-Stokes solver for problem at each time step no convincing NCP-coupled-to-Stokes (free-boundary) solvers exist yet

o however, Wirbel & Jarosch (2020) is an important beginning

• the Bueler (2016) implicit and NCP SIA solver scales badly: $\beta = 0.8$

Outline

- 1 introduction to glaciers and ice sheets
- 2 the basic mathematical model for glaciers
- 3 numerics: time-stepping
- 4 numerics: Stokes models
- 5 numerics: comparative performance analysis

6 a multilevel approach

conclusion

- direct attack on the NCP-coupled-to-Stokes problem, to get an optimal (β = 0) solver, seems to require a multilevel solver for variational inequalities (VIs)
- but in the non-local residual case
 - application of the smoother needs to reduce the NCP residual from the surface-motion term Φ(s) = -**u**|_s · **n**_s, where **u**|_s is evaluated from a scalable Stokes solver
- this seems not to exist, but we are making progress

a new multilevel SIA solver (joint with P. Farrell)

FASCD

full approximation storage constraint decomposition a multilevel method for box-constrained NCPs and VIs

• in preparation, but here are fresh preliminary results ...

a new multilevel SIA solver (joint with P. Farrell)

- results below show FASCD F-cycles give optimal ($\beta = 0$) performance for the SIA NCP problem
 - iterations = number of V-cycles after F-cycle "ramp"

• time is for 4-core runs on my laptop

levels	m	iterations	<i>time</i> (s)
2	20 ²	5	3.10
3	40 ²	4	3.55
4	80 ²	4	4.39
5	160 ²	4	7.12
6	320 ²	4	17.66
7	640 ²	5	69.92
8	1280 ²	5	284.02
9	2560 ²	4	1006.41

Outline

- 1 introduction to glaciers and ice sheets
- 2 the basic mathematical model for glaciers
- 3 numerics: time-stepping
- 4 numerics: Stokes models
- 5 numerics: comparative performance analysis
- 6 a multilevel approach

7 conclusion

 glacier simulations are both important to humanity and a rich source of interesting mathematics

o predict sea level rise!

- ice sheet models solve a multi-scale, irregular-data problem with hard-to-observe boundary conditions
 - there are no easy or magic techniques for performance
- current-technology ice sheet models mostly use explicit time stepping, non-optimal stress-balance solvers, and shallow assumptions
 - progress is being made in all of these areas, e.g. scalable Stokes solvers (Isaac et al. 2015)
- scalable solvers for implicit-step, NCP-coupled-to-Stokes models require multilevel solvers for non-local variational inequalities
 - is this the preferred numerical design for the basic glacier model?

- glacier simulations are both important to humanity and a rich source of interesting mathematics
 - o predict sea level rise!
- ice sheet models solve a multi-scale, irregular-data problem with hard-to-observe boundary conditions

• there are no easy or magic techniques for performance

- current-technology ice sheet models mostly use explicit time stepping, non-optimal stress-balance solvers, and shallow assumptions
 - progress is being made in all of these areas, e.g. scalable Stokes solvers (Isaac et al. 2015)
- scalable solvers for implicit-step, NCP-coupled-to-Stokes models require multilevel solvers for non-local variational inequalities
 - is this the preferred numerical design for the basic glacier model?

 glacier simulations are both important to humanity and a rich source of interesting mathematics

o predict sea level rise!

- ice sheet models solve a multi-scale, irregular-data problem with hard-to-observe boundary conditions
 - there are no easy or magic techniques for performance
- current-technology ice sheet models mostly use explicit time stepping, non-optimal stress-balance solvers, and shallow assumptions
 - progress is being made in all of these areas, e.g. scalable Stokes solvers (Isaac et al. 2015)
- scalable solvers for implicit-step, NCP-coupled-to-Stokes models require **multilevel solvers for non-local variational inequalities**
 - is this the preferred numerical design for the basic glacier model?

- glacier simulations are both important to humanity and a rich source of interesting mathematics
 - predict sea level rise!
- ice sheet models solve a multi-scale, irregular-data problem with hard-to-observe boundary conditions
 - there are **no easy or magic techniques** for performance
- current-technology ice sheet models mostly use explicit time stepping, non-optimal stress-balance solvers, and shallow assumptions
 - progress is being made in all of these areas, e.g. scalable Stokes solvers (Isaac et al. 2015)
- scalable solvers for implicit-step, NCP-coupled-to-Stokes models require multilevel solvers for non-local variational inequalities
 - o is this the preferred numerical design for the basic glacier model?

references (partial list)

- E. Bueler (2016). Stable finite volume element schemes for the shallow-ice approximation, J. Glaciol. 62 (232), 230–242, 10.1017/jog.2015.3
- E. Bueler (2022). Performance analysis of high-resolution ice-sheet simulations, J. Glaciol., 10.1017/jog.2022.113
- E. Bueler & P. Farrell (in preparation). A full approximation storage multilevel method for nonlinear variational inequalities
- N. Calvo, J. Díaz, J. Durany, E. Schiavi, & C. Vázquez (2002). On a doubly-nonlinear parabolic obstacle problem modelling ice sheet dynamics, SIAM J. Appl. Math., 63(2), 683–707 10.1137/S0036139901385345
- T. Isaac, G. Stadler, & O. Ghattas (2015). Solution of nonlinear Stokes equations discretized by high-order finite elements on nonconforming and anisotropic meshes, with application to ice sheet dynamics, SIAM J. Sci. Comput. 37 (6), B804–B833, 10.1137/140974407
- G. Jouvet & E. Bueler (2012). Steady, shallow ice sheets as obstacle problems: well-posedness and finite element approximation, SIAM J. Appl. Math. 72 (4), 1292–1314, 10.1137/110856654
- P. Piersanti & R. Temam (2022). On the dynamics of grounded shallow ice sheets: modeling and analysis, Adv. Nonlinear Analysis 12, 10.1515/anona-2022-0280
- A. Wirbel & A. Jarosch (2020). Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1), Geosci. Model Dev. 13 (12), 6425–6445, 10.5194/gmd-13-6425-2020