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example: a classical obstacle problem

problem. on a domain Ω ⊂ R2, find the displacement u(x) of a
membrane, with fixed value u = g on ∂Ω, above an obstacle ψ(x),
which minimizes the elastic energy

J(v) =
∫
Ω

1
2
|∇v |2 − f v

shown above: Ω = (−2,2)2, ψ(x) a hemisphere, f (x) = 0
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example: a classical obstacle problem

i.e. constrained optimization over a convex admissible set

K =
{

v ∈ H1(Ω) : v
∣∣
∂Ω

= g and v ≥ ψ
}

J ′(u) points directly into K, the variational inequality (VI):

〈
J ′(u), v − u

〉
=

∫
Ω
∇u · ∇(v − u)− f (v − u) ≥ 0 for all v ∈ K
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example: a classical obstacle problem

the solution defines active Au = {u = ψ} and inactive
Ru = {u > ψ} subsets of Ω, and a free boundary Γu = ∂Ru ∩ Ω

naive strong form would pose the problem in terms of its solution:

−∇2u = f on Ru

u = ψ on Au
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example: a classical obstacle problem

the complementarity problem (CP) is meaningful as a strong form:

u − ψ ≥ 0

−∇2u − f ≥ 0

(u − ψ)(−∇2u − f ) = 0

◦ for optimization problems: CP = KKT conditions
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general variational inequalities

let K be a closed and convex subset of a Banach space V
suppose F : K → V ′ is a continuous, generally nonlinear operator
◦ F may be defined only on K
◦ F may not be the derivative of an objective function J

the general problem VI(F ,K) is

⟨F (u), v − u⟩ ≥ 0 for all v ∈ K

when K is nontrivial the problem VI(F ,K) is nonlinear even when
F is a linear operator
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VI = “constrained equation”

unconstrained optimization:

min
u∈V

J(u)

constrained optimization:

min
u∈K

J(u)

equation for u ∈ V:

F (u) = 0

VI for u ∈ K:

⟨F (u), v − u⟩ ≥ 0 ∀v ∈ K
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applications of VIs

elastic contact, Signorini problems (e.g. Kikuchi & Oden 1988)
viscous contact problems (de Diego et al. 2022)
pricing of American options in the Black-Scholes model
the geometry of glaciers ←− more soon

first-semester calculus
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nonlinear 2-grid scheme

Ωh ΩH

consider a nonlinear elliptic PDE problem:

F (u) = ℓ

for example, F : V → V ′ for V = H1(Ω), with ℓ ∈ V ′

discretization gives algebraic system on fine grid Ωh:

F h(uh) = ℓh

suppose wh yields residual norm ∥ℓh − F h(wh)∥ > TOL
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nonlinear 2-grid scheme

Ωh ΩH

how can we improve wh without globally linearizing F h?
(are there alternatives to Newton’s method?)
note the residual rh(wh) = ℓh − F h(wh) is computable,
while the error eh = wh − uh is unknown
the residual definition can be rewritten

F h(uh)− F h(wh)
∗
= rh(wh)

for F h linear, try to solve this error equation F h(eh) = −rh(wh) for
ẽh, and correct wh ← wh − ẽh to improve wh?
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nonlinear 2-grid scheme

Ωh ΩH

goal: use a coarser mesh to estimate the error in ∗
nodewise problem: for ψh

i a hat function or dof, solve for c ∈ R:

ϕi(c) = rh(wh + cψh
i )[ψ

h
i ] = 0

sweeping through and solving nodewise problems is a smoother
◦ Fourier analysis on linear PDEs shows smoothing property
◦ post-smoothing, eh and rh(wh) have smaller high-frequencies

Brandt (1977): after smoothing, F h(uh)− F h(wh) = rh(wh) should
be accurately approximate-able on a coarser grid
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nonlinear 2-grid scheme

Ωh ΩH

goal: use a coarser mesh to estimate the error in ∗
full approximation storage (FAS) equation:

F H(wH)− F H(R•wh) = R rh(wh)

◦ R• : Vh → VH is injection
◦ R : (Vh)′ → (VH)′ is canonical restriction
◦ if wh = uh exactly then wH = R•wh by well-posedness

rewritten: F H(wH) = ℓH where ℓH = F H(R•wh) + R rh(wh)
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FAS 2-grid solver

smooth by sweeps over grid: wh ← [ϕi(c) = 0∀i]
restrict: ℓH = F H(R•wh) + R rh(wh)

solve coarse: F H(wH) = ℓH

correct : wh ← wh + P(wH − R•wh)

smooth by sweeps over grid: wh ← [ϕi(c) = 0∀i]

P : VH → Vh is prolongation

recall: ϕi(c) = rh(wh + cψh
i )[ψ

h
i ]

restrict+(solve coarse)+correct = coarse grid correction
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nonlinear multigrid by FAS V-cycle or F-cycle

FAS-VCYCLE(ℓJ ;wJ):
for j = J downto j = 1

SMOOTHdown(ℓj ;w j)
w j−1 ← R•w j

ℓj−1 = F j−1(w j−1) + R
(
ℓj − F j(w j)

)
SOLVE(ℓ0;w0)
for j = 1 to j = J

w j ← w j + P(w j−1 − R•w j)
SMOOTHup(ℓj ;w j)
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nonlinear multigrid by FAS V-cycle or F-cycle

F-cycle =
nested iteration
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does it work?

FAS multigrid works well on the right nonlinear PDE problem
example: Liouville-Bratu equation1

−∇2u − eu = 0

with Dirichlet boundary conditions on Ω = (0,1)2

implement with minimal problem-specific code:
1. residual evaluation on grid level: F j(·)
2. pointwise smoother: ϕi(c) = 0 ∀i

◦ e.g. nonlinear Jacobi or Gauss-Seidel iteration

3. coarse solve can be same as smoother, or use Newton etc.

1exact solution by Liouville (1853) makes a nice test case
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multigrid solver composition in PETSc

implemented here using an FD discretization and PETSc:2

◦ multigrid solvers in PETSc are composed from smoothers on each
level, and a coarse-level solver . . . here these are nonlinear GS

◦ FAS multigrid is a nonlinear solver (SNES) type
◦ PETSc = C/Fortran/python

FAS multigrid F-cycle:
./bratu -da_grid_x 5 -da_grid_y 5 -da_refine J \

-snes_rtol 1.0e-12 \
-snes_type fas \
-snes_fas_type full \
-fas_levels_snes_type ngs \
-fas_levels_snes_ngs_sweeps 2 \
-fas_levels_snes_ngs_max_it 1 \
-fas_levels_snes_norm_schedule none \
-fas_coarse_snes_type ngs \
-fas_coarse_snes_max_it 1 \
-fas_coarse_snes_ngs_sweeps 4 \
-fas_coarse_snes_ngs_max_it 1

2Portable Extensible Toolkit for Scientific computing petsc.org
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Bratu model problem: optimality

observed optimality:

flops = O(N1)

exp evaluations = O(N1)

processor time = O(N1)

up to N ≈ 108 dofs
◦ J = 11 refinements
◦ laptop is memory-limited

compare ≈ 20µ s/N for
Poisson equation using
Firedrake P1 elements and
geometric multigrid
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benefits of FAS multigrid for nonlinear PDEs?

benefits of FAS multigrid?
1. minimal code, esp. in from-scratch implementations

◦ just write residual plus pointwise smoother!

2. composition with nonlinear preconditioners (Brune et al. 2015)

disadvantages?
1. Firedrake/FENiCs do automatically provide linearizations from UFL

statements of weak forms
2. small literature of convergence or descriptive performance for FAS

(Trottenberg et al. (2001), Reusken (1987))
3. not enough tutorial literature?
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problem: fluid layer in a climate

let’s not get stuck on textbook example problems!
multigrid for a real-world VI problem?
consider an incompressible, viscous layer with surface elevation
s(x , y), flowing with velocity u(x , y , z), driven by gravity, over fixed
bed topography with elevation b(x , y), in a climate which adds or
removes fluid at a signed rate a(x , y) [m s−1]
◦ data a,b defined on domain Ω ⊂ R2

geophysical examples: glaciers and ice sheets, sea ice, lakes
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example: glacier ice coverage of the Alps in prior climates

Sequinot et al. (2018)

more ice sheet modeling at my Math. Geosci. Seminar tomorrow 2pm L5
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naive strong form

naive strong form of the steady model:

s ≥ b everywhere in Ω

−u|s · ns = a where s(x , y) > b(x , y)

◦ surface velocity u|s is determined by fluid domain geometry s
◦ ns = ⟨−∇s,1⟩ is upward surface normal
◦ generally: −u|s · ns is a non-local function of s

the inequality constraint s ≥ b generates a free boundary
if an ablative climate a < 0 forces surface down to bed
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how to evaluate Φ(s) = −u|s · ns for glacier ice?

Stokes model
solve the Stokes problem, then evaluate velocity at surface:∫
Λ(s)={b<z<s}

2ν(Du)Du : Dv−p∇·v− (∇·u)q−ρig ·v = 0 ∀v,q

Φ(s) = −u|s · ns

◦ assuming incompressibility and non-Newtonian viscosity:
ν(Du) = 1

2Γ|Du|p−2 with p = 4
3

◦ given s, this is a well-posed problem for velocity u ∈W1,p and
pressure p ∈ Lq on domain Λ(s)

◦ near-optimal solvers available (Isaac et al 2015)
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how to evaluate Φ(s) = −u|s · ns for glacier ice?

lubrication approximation3 model
apply a nonlinear elliptic differential operator to s:

Φ(s) = −γ
q
(s − b)q|∇s|q −∇ ·

(
γ

q + 1
(s − b)q+1|∇s|q−2∇s

)

q = 4
∇ is in x , y only
Φ(s) is a nonlinear differential operator in this model because
membrane stresses are not balanced
Φ(s) is doubly-degenerate

3also known as the shallow ice approximation
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VI for fluid layer in a climate

admissible surface elevations:

K = {r ∈ V : r ≥ b}

◦ V to be determined by viscous fluid model4

VI problem for surface elevation s ∈ K:

⟨Φ(s), r − s⟩ ≥ ⟨a, r − s⟩ for all r ∈ K

where
Φ(s) = −u|s · ns,

with extension by 0 to all of Ω, and u is the velocity solution on

Λ(s) = {(x , y , z) : b(x , y) < z < s(x , y)}

4in shallow ice approximation, (s − b)8/3 ∈ W 1,4(Ω) (Jouvet & Bueler, 2012)
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CP form of viscous fluid layer in a climate

VI form on previous slide is too abstracted for clarity
the strong form of the same problem is a complementarity
problem (CP) coupled to a Stokes problem:

s − b ≥ 0 in Ω ⊂ R2

−u|s · ns − a ≥ 0 ”
(s − b)(−u|s · ns − a) = 0 ”

−∇ · (2ν(Du)Du) +∇p − ρig = 0 in Λ(s) ⊂ R3

∇ · u = 0 ”
(2ν(Du)Du− pI)n = 0 {z = s} ⊂ ∂Λ(s)

u = 0 {z = b} ⊂ ∂Λ(s)

solve this for s on Ω, and simultaneously for u,p on
Λ(s) = {b < z < s}
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a non-local VI problem

in the Stokes case, the residual r(s) = a− Φ(s) = a + u|s · ns
depends non-locally on s
for example, consider u(s+ψ) − u(s) from surface perturbation
(hat function) ψ

P. Arndt figure
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what’s needed for multigrid to work here?

viscous fluid layer geometry problem

⟨Φ(s), r − s⟩ ≥ ⟨a, r − s⟩ for all r ∈ K

where
K = {r ∈ V : r ≥ b}
Φ(s) = −u|s · ns

s is solution surface elevation
u is Stokes solution on Λ(s) = {b < z < s}
a (climate) and b (bed elevation) are the input data

◦ for more on this problem class see (Bueler, 2021)

what is needed for scalable multilevel solutions?
1. iterates must be admissible
2. global linearization of Φ(s) must be avoided
3. smoother cost must be comparable to one residual
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Newton-multigrid for the classical obstacle problem

VIs are nonlinear problems, even for linear operators like −∇2

Newton-multigrid is straightforward in PETSc:
./obstacle -da_grid_x 3 -da_grid_y 3 \

-snes_type vinewtonrsls -ksp_type cg -pc_type mg \
-da_refine J

◦ linear solver applies to inactive variables
rsls = reduced space line search

◦ Newton step equations solved by CG with GMG V-cycles
issue: the outer Newton iteration must converge on the active set
before multigrid can provide effective preconditioning
◦ grid-dependent (growing) Newton iterations
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nested iteration

applying nested iteration (nonlinear F-cycle) resolves this:
./obstacle -da_grid_x 3 -da_grid_y 3 \

-snes_type vinewtonrsls -ksp_type cg -pc_type mg \
-snes_grid_sequence J

◦ grid-independent Newton iterations
◦ optimal O(N1) flops and time
◦ Chapter 12 example in my new book
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multigrid strategies for VIs

semi-smooth Newton also yields mesh-independent iterations
◦ penalty scaling argument (Farrell et al. 2020)

other VI multilevel strategies:
◦ projected FAS multigrid for linear CPs (Brandt & Cryer, 1983)
◦ monotone multigrid (Kornhuber, 1994)
◦ multilevel constraint decomposition (Tai, 2003) ← more below
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multigrid strategies for VIs: feature table

admissible
iterates

mesh-indep.
rates

no global
linearization

PETSc or
Firedrake

RS NM ✓ ✓
+ NI ✓ ✓ ✓

SS NM ✓ ✓

FASCD ✓ ? ✓

RS = reduced space, SS = semi-smooth, NM = Newton-multigrid, NI = nested iteration

for the non-local fluid layer VI problem we need all 4 checked
we are trying-out a new algorithm,
FASCD = full approximation storage constraint decomposition
◦ Firedrake implementation

Bueler and Farrell Multigrid for nonlinear and nonlocal VIs 28 / 38



multigrid strategies for VIs: feature table

admissible
iterates

mesh-indep.
rates

no global
linearization

PETSc or
Firedrake

RS NM ✓ ✓
+ NI ✓ ✓ ✓

SS NM ✓ ✓

FASCD ✓ ? ✓ ✓

RS = reduced space, SS = semi-smooth, NM = Newton-multigrid, NI = nested iteration

for the non-local fluid layer VI problem we need all 4 checked
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constraint decomposition

Tai’s (2003) constraint decomposition (CD) for VIs follows the
subspace decomposition idea (Xu 1992)
suppose K ⊂ V is a closed and convex admissible subset
for a subspace decomposition V =

∑
i Vi , write the admissible

subset as a sum
K =

∑
i

Ki

where Ki ⊂ V i , with projections Πi : K → Ki
CD additive and multiplicative iterations exist for VI(F , ℓ,K)

CD-ADD(u):
for i ∈ {0, . . . ,m − 1}:

find ŵi ∈ Ki so that for all vi ∈ Ki ,
⟨F (u − Πiu + ŵi), vi − ŵi⟩ ≥ ⟨ℓ, vi − ŵi⟩

ŵ =
∑

i ŵi ∈ K
return w = (1− α)u + αŵ
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multilevel constraint decomposition

recall K = {v ≥ ψ} in classical obstacle problem
define defect obstacle for a fine-level iterate wJ :

χJ = ψJ − wJ

monotone restriction generates obstacles on each level:

χj = R⊕χj+1

let U j = {z ≥ χj}, Dj = {y ≥ χj − χj−1}
get CD of fine-level constraint set:

UJ =
J∑

i=0

Di

multiplicative CD iteration→ V-cycle
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as decomposition of the fluid layer

again this is too abstract
what does it look like for the fluid layer?
◦ coarse grids have admissible pieces of the fine-grid iterate
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full approximation storage constraint decomposition

FASCD-VCYCLE(ℓJ , ψJ ;wJ):
χJ = ψJ − wJ

for j = J downto j = 1
χj−1 = R⊕χj

ϕj = χj − Pχj−1

y j = 0
SMOOTHdown(ℓj , ϕj ,w j ; y j) (smoothing in Dj )
w j−1 = R•(w j + y j)
ℓj−1 = f j−1(w j−1) + R

(
ℓj − f j(w j + y j)

)
z0 = 0
SOLVE(ℓ0, χ0,w0; z0) (coarse solve in U0)
for j = 1 to j = J

z j = y j + Pz j−1

SMOOTHup(ℓj , χj ,w j ; z j) (smoothing in U j )
wJ ← wJ + zJ
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2D shallow ice approximation results (very fresh)

preliminary results
dome test case in lubrication approximation
◦ here Φ(s) is a differential operator
◦ note s8/3 ∈W 1,4(Ω) but not in C2

FASCD algorithm result
◦ Firedrake P1 elements
◦ strong smoother (vinewtonrsls)
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evidence of mesh independence

same lubrication approximation, but in 1D
FASCD V-cycles with NGS and NJacobi smoothers
up-smoothing preferred: V(0,2) beats V(1,1)
evidence of mesh independence of factors ∥r (k+1)∥/∥r (k)∥
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summary and outlook

the variational inequality (VI) problem class is good to know
likewise full approximation storage (FAS) multigrid
◦ need for better support and documentation in PETSc/Firedrake

multigrid treatment of nonlinear and nonlocal VIs?
◦ smoothers not obvious in nonlocal cases
◦ seeking practical evidence of mesh-independent convergence

glacier evolution, as fluid-layer-in-climate problems, needs
attention from applied mathematicians and numerical analysts
◦ VI form not widely recognized
◦ current state of the art = explicit time stepping of surface

▷ slow for science, intrinsically not scalable

◦ to do: steady-state and implicit step VI problems
◦ more on this view in my Math. Geosci. seminar tomorrow 2pm L5
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