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model for evolving glacier surfaces

implicit-step free-boundary problem (NCP or VI)
computational performance model

geometric multigrid with distinctive features

> constraint decomposition
» FAS-type nonlinear coarse corrections

minimal results, smoother difficulties



THE GLACIER GEOMETRY PROBLEM

m inputs:

> a = climatic mass balance S | ! t
(snowfall or melt&runoff) ¢ b /'

> b = bed elevation v

» other inputs ignored for e
simplicity: surface TN e -~

temperature, bed
composition, geothermal, ...

m goal: construct fast numerical
methods for this map!

climate and glacier
_>
topography geometry

ab — s




GLACIERS FLOW

m glacier geometry would be easy if the snow just piled-up!
m but glaciers flow

» very viscous, non-Newtonian fluid driven by gravity
» flow is mostly downhill, along —V«s
» ice flows into areas where there is melt




CONTINUUM MODEL BASICS

m X = (X, y) denotes horizontal coordinates
> X is map-plane
m data given on 2D domain Q:
> climate (time-dependent): a(t, x)
> bed elevation (stationary): b(x)
m we seek surface elevation s(t, x)
» obviously glaciers are on top:  s(t,x) > b(x)
m also seek velocity u(t, x, z) within 3D ice
> NAs = {b(x) < z < s(t,x)}




SURFACE KINEMATICAL EQUATION (SKE)

B mass conservation at glacier surface?
m this is the surface kinematical equation:

0s
E—uys-ns—azo

> ns = (—Vys, 1) is upward normal to surface
> u|s = u(t,x, s(t,x)) is 3D velocity at surface




ABSTRACT THE FLOW

m we will regard flow as a Stokes problem
» or a shallow approximation thereof

m problem becomes clearer if we abstract the flow as a map:

ice motion
surface .
. — from dynamics
elevation
at surface

o : s > —Uls - Ng




HOW TO COMPUTE ®(s)?

m how to compute ®(s) = —u|s - ng?
m Stokes: solve for u:

/ 2v(Du)Du : Dv — pV - v —(V -u)g — pig-vdx =0,
As

over all test v, g, where As = {(X,2) : b(X) < z < s(t,x)}is
the 3D ice and
)(p—Z)/Q

)

1
v.(Du) = Er(\Du|2+eDg

is effective viscosity and p = 1 + 1, then extract trace u|s, then
extend ¢(s) = —u|s-ns by 0 to Q

> well-posed over W, ®(As)® x L9(As) (Jouvet & Rappaz 2011)
» near-optimal solver (Isaac et al 2015)




HOW TO COMPUTE ®(s)?

m how to compute ®(s) = —uls - ng?

m shallow ice approximation (SIA): evaluate

P(s) = —%(s—b)qwxsyq—vx- (q 1 S(s— b)a+1 yvxsyq—vas>

where g =n+ 1 and v > 0 is related to ice softness and
density
> SIA = lubrication approximation

> ®(s) is a nonlinear differential operator only because
membrane (longitudinal) stresses are unbalanced




VELOCITY EXPRESSION OF S PERTURBATION

m derivative of ®(s) = —uls - ng?
m difference u(s, ) — U(s) from surface perturbation
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A CLOSER LOOK

m perturb s by 5 m bump, over 200 m
m resulting Stokes velocity difference

> Stokes @(s) is not local
» note longitudinal-stress range (Kamb & Echelmeyer 1986)




A CLOSER LOOK

m perturb s by 5 m bump, over 200 m
m resulting Stokes velocity difference

> Stokes @(s) is not local
» note longitudinal-stress range (Kamb & Echelmeyer 1986)
» overlain SIA difference, localized under s perturbation!




FREE-BOUNDARY PROBLEM FOR S

m goal: determine glacier surface elevation s and glaciated area
m this is a free-boundary problem in the map-plane

m basic logic gives a nonlinear complementarity* problem (NCP)
over all of Q:

s—-b>0
0s
— —a>
8t+¢(s) a>0
0s %
(s—b) <at+¢(s)—a> =0

> we extend uls by zero so ®(s) = 0 in ice-free areas
» glaciated area Q.. (f) := {x : s(t,x) > b(x)} ...from solution!



BACKWARD EULER STEP

m ice mostly flows downhill, so SKE is mostly diffusive!

> straightforward in shallow ice approximation
> not literally a diffusion with Stokes dynamics

m implicit stepping makes sense . . .try backward Euler:

S— 5
At

+o(s)—a=0

> s, is the previous surface elevation
> sis new surface elevation

m each time step is a free boundary problem, an NCP:

s—b>0
S+ Atd(s) — (so + Ata) >0

(s—b)(s+At¢(s) - (so+Ata)) ~0



IMPLICIT STEP AS VARIATIONAL INEQUALITY

m convert to weak form for FE treatment: NCP — VI
m define admissible surface elevations:

K={r:r>b}

> the constraint set
> closed and convex subset of V = W'P(Q)

m define nonlinear form and source linear functional:
N(s)[q] :/Q(s+At¢(s))qu, flg] = /Q(so + Ata)qdx
m backward Euler step VI: find s € K so that
N(s)[r — s] > f[r — 9]

forallre




DISCRETIZATION AND SOLVERS?

m VI = abstract, dynamics-agnostic, implicit time-step problem:
N(s)[r — s] > f[r — 5]

m next steps: FE discretization, solvers
m can we actually solve it?

A. yes for the SIA (Bueler 2016)

A. efficiently, some day, | hope, for Stokes
m what do current models do?

A. explicit time stepping, usually forward Euler, and that is a
tragedy

PISIVI lSSM, Qe <&

.
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COMPUTATIONAL PARAMETERS

m for this story | need a performance model (Bueler, submitted)

m use only 3 parameters to describe simulations: typical values
> climate-couplings per model year q 0.1-12
» domain size (length) L 1000 km — 10 km
» mesh spacing Ax 10km—10m
m stability restrictions for explicit schemes:
o A
» optimistic (CFL): At< O 7)( weeks to hours?
R AX? .
» pessimistic: At < O R days to minutes?

m degrees of freedom m scale with 2D mesh spacing:
L L?
AX_O(ﬁ) = m_O<AX2>




ALGORITHMIC SCALING

m algorithmic scaling of solvers:
» fixed-geometry velocity solution: O(m'*+<) flops
a =~ 0 (multigrid: Brown, Isaac, Tuminaro), 1 (sparse direct)
» implicit (velocity&geometry) solution: O(m'*7) flops
~ =~ unknown (Stokes), 0.8 (SIA: Bueler 2016)

m giving a model for asymptotic simulation cost:

time-stepping flops per model year

explicit (optimistic) O (Zf;ii) =0 <Um1L5+O‘>
explicit (pessimistic) O (ZSL?) =0 (DT?Q)
implicit o (Zij) = 0(gm'™7)




ALGORITHMIC SCALING

m algorithmic scaling of solvers:
» fixed-geometry velocity solution: O(m'*+<) flops
a =~ 0 (multigrid: Brown, Isaac, Tuminaro), 1 (sparse direct)
» implicit (velocity&geometry) solution: O(m'*7) flops
~ =~ unknown (Stokes), 0.8 (SIA: Bueler 2016)

m giving a model for asymptotic simulation cost:

time-stepping flops per model year

explicit (optimistic) O (ﬂ) =0 <Um1L5+O‘>

explicit (pessimistic) O (Ziiij) =0 (DT?Q) + tragedy
implicit o) (Zii;) -0 (q m””)




GEOMETRIC MULTIGRID FOR IMPLICIT STEPS?

m goal: v ~ 0 in O(m'*7) cost of implicit solve
m can GMG be used as a solver?
> need exploitable solution property: surface smoothness
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GEOMETRIC MULTIGRID FOR IMPLICIT STEPS?

m solving a free-boundary (obstacle) problem

» constraint s > b (obstacle is rough bed elevation data!)
m issues:
1. fine mesh bed data not present on coarse mesh

o coarse iterates not necessarily admissible on fine
2. free boundary location depends on mesh

—— fine s,b
-@- coarse s
--@-: coarse b

[
®

coarser mesh

finer mesh




DISTINCTIVE GMG FEATURES

m next: outline a GMG for the glacier geometry problem
» simultaneous solution for surface elevation and velocity

m distinctive flavors:

1. subspace decomposition viewpoint
2. ordinary residual does not converge to zero
3. each coarse level has 2 constraint sets

o defect constraint
o monotone restriction
o multilevel constraint decomposition (Tai, 2003)

4. FAS-type nonlinear coarse corrections
5. smoother?

o Stokes residual is expensive and non-local!



SUBSPACE DECOMPOSITION VIEWPOINT

m hat functions span FE space on level j:
V= span{¢}(X), ..., v, (X)}
m multilevel subspace decomposition:
V=10 yt Y

m hats are combinations of finer hats:

Wb (%) = Cogth(x)
q=1

o
> Cpg =1Up  (Xg)

» canonical prolongation P

> canonical (dual) restriction R
> see Xu (1992)

L 2



m consider abstract NCP

(AVANAYS

0
0
0

—b
()
(s = b)F(s)

m the solution does not satisfy F(s) = 0 everywhere
» generally F(s) > 0wheres=»b

m how to tell if an iterate w ~ s is converged?
m A. need to monitor NCP residual F(w):

p s _ JFW)wpl, w(xp) > b(xp)
Fwleel = {min{F(SV)[wb’],O}, W(Xg) = b(Xg)

IF(w) vy <tol =  wsolves NCP



DEFECT CONSTRAINT

W suppose:

» b’ is fine-level bed elevation
» w is admissible fine-level iterate (w’ > b’)

m define defect constraint and defect constraint set:

o=t w
DJ:{VEXJ}CVJ

» notice x/ <0

» w’ + 27 is admissible if and only if z/ € DY




DECOMPOSE THE DEFECT CONSTRAINT

m Tai (2003): decompose the fine-level defect constraint onto
coarser meshes using monotone restriction




DECOMPOSE THE DEFECT CONSTRAINT

m monotone restriction operator R® : Y/ — Vi—1:

mj_q
i—1 j ji—1
R®z — Z max{Zg : @Z)L (Xé) > O}gZJ;J
p=1
» observe R®z > z
mforj=1,...,Jlet ‘ ‘
Y= R®y/
» also define x '=0
m gaps between defect constraints: ¢/ =/ — /!

m telescoping-sum:

J
D=+ =)+ E X+ T =X
/=0




MULTILEVEL CONSTRAINT DECOMPOSITION (MCD)

m let
D={v>y} K={v>d}

m Tai (2003): decomposition of the fine-level defect constraint
set DY by cones D/ = K0 + - .- + K/ from the inside

ys €K? z3€D°
yo € K2 2 € D?
ek zeD'

Yo € K°

V3

D2=’C0+K:1+K:2
X’ D3=’C0+’C1+K2+IC3



MULTILEVEL CONSTRAINT DECOMPOSITION (MCD)

m dishonest attempt to illustrate MCD as decomposition of ice:




FAS-TYPE COARSE CORRECTIONS

m now add an idea not in Tai (2003)

m suppose:

» ¢ is solution iterate on current level
> down-smoother computes y/ € K/
» new solution iterate is § = ¢/ + y/

m nonlinear coarse correction needs to restrict residual and §/

> full approximation scheme (FAS)
> in formulas:

F=N(@) -7

o =AY
=1 =N-"(g=") - RF

where R* is state restriction (e.g. injection)



PUT IT TOGETHER: NONLINEAR MCD ALGORITHM

NMCD-VCYCLE(J, w’, x?):

¢ =w 3 3
for j = J downto j = 1 ys ek nep
V= ROy ye € K? 2 € D?
@ = — Py y1 € K! z € D'
y' =0
SMOOTHER™*(j, ¢/, y/, NI, 1, &/) Yo € K2

F‘: Nj(gj +)’j) - fl
g =RG +y)
' =N-(g") - RF

0 _
y =0 T
SMOOTHERcoarse(O,gO7y0, NO, f07 XO)
ZO _ yO

. ) up-smoothing corrections
forj=1toj=J

Z=pF 1y act in larger sets
SMOOTHERHP(]? g/7 zj7 N]? fj7 Xj)
return z’




WHAT IS A GOOD SIA SMOOTHER?

m SlA residual is local
> (degenerate) elliptic differential operator
m pointwise smoothers adequate:

> projected nonlinear Gauss-Seidel (PNGS)
» projected nonlinear Jacobi (PNJacobi; below)

PNJACOBI(j, ¢/, ¥/, N/, fi, b/, newtonits = 2, omega = 0.67):
fork=1,... newtonits
pp(C) == NI + ¥/ + cyp)p] — Fvp]
o, 0p = pp(0), pp(0)
forp=1,....m;
¢ = POINTUPDATE(rp, Op, Yo, bp, FI[1h])
Yp < Yp + omegacC



SIA RESULTS

m compare PNGS and PNJacobi smoothers
m GMG v-cycle factors < 1 for SIA

» up-smoothing preferred, thus V(0, 2)

> evidence of mesh independence?

1.0

o o o
~ (o] [te}

asymptotic rate

o
o

0.5

st
o ° :
+
o +
&
o
O V(0,2)
O Vv(1,2) [m}
<& v)2) o
+ V(0,2)-Jacobi0.6
+ V(0,2)-Jacobi0.5
+ V(0,2)-Jacobi0.4

10°

10?2



WHAT IS A GOOD STOKES SMOOTHER?

m Stokes residual non-local!
m | have only beginnings of smoother ideas



SUMMARY AND OUTLOOK

m goal: GMG for implicit glacier geometry evolution
m much of the tool-chain exists:

» backward Euler or other stiff scheme
» NCP or VI for free-boundary problem at each time step
» nonlinear MCD solution of the VI

o aform of GMG
m mostly implemented in Firedrake

> extruded mesh
» mixed-element, GMG solution of Stokes equations

m outlook for entire approach depends on constructing
a performant smoother for Stokes dynamics
m I'm kind of stuck, and seeking help!

31/ 31
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extra: COMPLETE STRONG FORM

m solve one step of backward Euler for s,u, p
m system of NCP coupled to Stokes problem:

s—b>0 onQ
s—Atu|s-ng— (s, + Ata)y>0 7
(s —b)(s— Atu|s-ns — (s, + Ata)) =0
—V - (2v(Du) Du) + Vp—pig=0 onAs
V-u=0 "7
u=0 onlyg
(2v(Du)Du — phn=0 on 9As\ Iy

> with regularized Glen-law effective viscosity (p = 1 + 1):

r

v(Du) = = (|Dul? + ¢ )22

N



