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OUTLINE

1. model for evolving glacier surfaces
2. implicit-step free-boundary problem (NCP or VI)
3. computational performance model
4. geometric multigrid with distinctive features

I constraint decomposition
I FAS-type nonlinear coarse corrections

5. minimal results, smoother difficulties
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THE GLACIER GEOMETRY PROBLEM

inputs:
I a = climatic mass balance

(snowfall or melt&runoff)
I b = bed elevation
I other inputs ignored for

simplicity: surface
temperature, bed
composition, geothermal, . . .

goal: construct fast numerical
methods for this map!(

climate and
topography

)
→
(

glacier
geometry

)
a,b 7→ s
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GLACIERS FLOW

glacier geometry would be easy if the snow just piled-up!
but glaciers flow
I very viscous, non-Newtonian fluid driven by gravity
I flow is mostly downhill, along −∇xs
I ice flows into areas where there is melt
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CONTINUUM MODEL BASICS

x = (x , y) denotes horizontal coordinates
I x is map-plane

data given on 2D domain Ω:
I climate (time-dependent): a(t ,x)
I bed elevation (stationary): b(x)

we seek surface elevation s(t ,x)
I obviously glaciers are on top: s(t ,x) ≥ b(x)

also seek velocity u(t ,x, z) within 3D ice
I Λs := {b(x) < z < s(t ,x)}
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SURFACE KINEMATICAL EQUATION (SKE)

mass conservation at glacier surface?
this is the surface kinematical equation:

∂s
∂t
− u|s · ns − a = 0

I ns = 〈−∇xs,1〉 is upward normal to surface
I u|s = u(t ,x, s(t ,x)) is 3D velocity at surface
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ABSTRACT THE FLOW

we will regard flow as a Stokes problem
I or a shallow approximation thereof

problem becomes clearer if we abstract the flow as a map:

(
surface

elevation

)
→

 ice motion
from dynamics

at surface


Φ : s 7→ −u|s · ns
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HOW TO COMPUTE Φ(s)?

how to compute Φ(s) = −u|s · ns?

Stokes: solve for u:∫
Λs

2νε(Du)Du : Dv− p∇ · v− (∇ · u)q − ρig · v dx = 0,

over all test v, q, where Λs = {(x, z) : b(x) < z < s(t ,x)} is
the 3D ice and

νε(Du) =
1
2

Γ
(
|Du|2 + εD2

0
)(p−2)/2

,

is effective viscosity and p = 1
n + 1, then extract trace u|s, then

extend Φ(s) = −u|s · ns by 0 to Ω

I well-posed over W 1,p
0 (Λs)3 × Lq(Λs) (Jouvet & Rappaz 2011)

I near-optimal solver (Isaac et al 2015)
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HOW TO COMPUTE Φ(s)?

how to compute Φ(s) = −u|s · ns?

shallow ice approximation (SIA): evaluate

Φ(s) = −γ
q

(s−b)q|∇xs|q−∇x·
(

γ

q + 1
(s − b)q+1|∇xs|q−2∇xs

)
where q = n + 1 and γ > 0 is related to ice softness and
density
I SIA = lubrication approximation
I Φ(s) is a nonlinear differential operator only because

membrane (longitudinal) stresses are unbalanced
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VELOCITY EXPRESSION OF s PERTURBATION

derivative of Φ(s) = −u|s · ns?
difference u(s+ψ) − u(s) from surface perturbation ψ

P. Arndt figure
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A CLOSER LOOK

perturb s by 5 m bump, over 200 m
resulting Stokes velocity difference
I Stokes Φ(s) is not local
I note longitudinal-stress range (Kamb & Echelmeyer 1986)

I overlain SIA difference, localized under s perturbation!
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FREE-BOUNDARY PROBLEM FOR s

goal: determine glacier surface elevation s and glaciated area
this is a free-boundary problem in the map-plane
basic logic gives a nonlinear complementarity∗ problem (NCP)
over all of Ω:

s − b ≥ 0
∂s
∂t

+ Φ(s)− a ≥ 0

(s − b)

(
∂s
∂t

+ Φ(s)− a
)
∗
= 0

I we extend u|s by zero so Φ(s) = 0 in ice-free areas
I glaciated area Ω+(t) := {x : s(t ,x) > b(x)} . . . from solution!
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BACKWARD EULER STEP

ice mostly flows downhill, so SKE is mostly diffusive!
I straightforward in shallow ice approximation
I not literally a diffusion with Stokes dynamics

implicit stepping makes sense . . . try backward Euler:

s − so

∆t
+ Φ(s)− a = 0

I so is the previous surface elevation
I s is new surface elevation

each time step is a free boundary problem, an NCP:

s − b ≥ 0
s + ∆t Φ(s)− (so + ∆t a) ≥ 0

(s − b)
(

s + ∆t Φ(s)− (so + ∆t a)
)

= 0
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IMPLICIT STEP AS VARIATIONAL INEQUALITY

convert to weak form for FE treatment: NCP =⇒ VI
define admissible surface elevations:

K = {r : r ≥ b}

I the constraint set
I closed and convex subset of V = W 1,p(Ω)

define nonlinear form and source linear functional:

N(s)[q] =

∫
Ω

(s + ∆t Φ(s)) q dx, f [q] =

∫
Ω

(so + ∆t a) q dx

backward Euler step VI: find s ∈ K so that

N(s)[r − s] ≥ f [r − s]

for all r ∈ K
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DISCRETIZATION AND SOLVERS?

VI = abstract, dynamics-agnostic, implicit time-step problem:

N(s)[r − s] ≥ f [r − s]

next steps: FE discretization, solvers
can we actually solve it?

A. yes for the SIA (Bueler 2016)
A. efficiently, some day, I hope, for Stokes

what do current models do?
A. explicit time stepping, usually forward Euler, and that is a

tragedy
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COMPUTATIONAL PARAMETERS

for this story I need a performance model (Bueler, submitted)
use only 3 parameters to describe simulations: typical values

I climate-couplings per model year q 0.1 – 12
I domain size (length) L 1000 km – 10 km
I mesh spacing ∆x 10 km – 10 m

stability restrictions for explicit schemes:

I optimistic (CFL): ∆t < O
(

∆x
U

)
weeks to hours?

I pessimistic: ∆t < O
(

∆x2

D

)
days to minutes?

degrees of freedom m scale with 2D mesh spacing:

∆x = O
(

L√
m

)
⇐⇒ m = O

(
L2

∆x2

)
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ALGORITHMIC SCALING

algorithmic scaling of solvers:
I fixed-geometry velocity solution: O(m1+α) flops

α ≈ 0 (multigrid: Brown, Isaac, Tuminaro), 1 (sparse direct)
I implicit (velocity&geometry) solution: O(m1+γ) flops

γ ≈ unknown (Stokes), 0.8 (SIA: Bueler 2016)

giving a model for asymptotic simulation cost:

time-stepping flops per model year

explicit (optimistic) O
(

UL2+2α

∆x3+2α

)
= O

(
Um1.5+α

L

)
explicit (pessimistic) O

(
D L2+2α

∆x4+2α

)
= O

(
D m2+α

L2

)
implicit O

(
q L2+2γ

∆x2+2γ

)
= O

(
q m1+γ

)
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explicit (pessimistic) O

(
D L2+2α
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= O

(
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implicit O
(

q L2+2γ

∆x2+2γ

)
= O

(
q m1+γ

)
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GEOMETRIC MULTIGRID FOR IMPLICIT STEPS?

goal: γ ≈ 0 in O(m1+γ) cost of implicit solve
can GMG be used as a solver?
I need exploitable solution property: surface smoothness
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GEOMETRIC MULTIGRID FOR IMPLICIT STEPS?

solving a free-boundary (obstacle) problem
I constraint s ≥ b (obstacle is rough bed elevation data!)

issues:
1. fine mesh bed data not present on coarse mesh

◦ coarse iterates not necessarily admissible on fine
2. free boundary location depends on mesh

finer mesh

coarser mesh

fine s, b
coarse s
coarse b
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DISTINCTIVE GMG FEATURES

next: outline a GMG for the glacier geometry problem
I simultaneous solution for surface elevation and velocity

distinctive flavors:
1. subspace decomposition viewpoint
2. ordinary residual does not converge to zero
3. each coarse level has 2 constraint sets

◦ defect constraint
◦ monotone restriction
◦ multilevel constraint decomposition (Tai, 2003)

4. FAS-type nonlinear coarse corrections
5. smoother?

◦ Stokes residual is expensive and non-local!
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SUBSPACE DECOMPOSITION VIEWPOINT

hat functions span FE space on level j :

V j = span{ψj
1(x), . . . , ψj

mj
(x)}

multilevel subspace decomposition:

Vh = V0 + V1 + · · ·+ VJ

hats are combinations of finer hats:

ψj−1
p (x) =

mj∑
q=1

cpqψ
j
q(x)

I cpq = ψj−1
p (xj

q)
I canonical prolongation P
I canonical (dual) restriction R
I see Xu (1992)

j = 3
j = 2
j = 1
j = 0
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NCP RESIDUAL

consider abstract NCP

s − b ≥ 0
F (s) ≥ 0

(s − b)F (s) = 0

the solution does not satisfy F (s) = 0 everywhere
I generally F (s) > 0 where s = b

how to tell if an iterate w ≈ s is converged?
A. need to monitor NCP residual F̂ (w):

F̂ (w)[ψJ
p ] =

{
F (w)[ψJ

p ], w(xJ
p) > b(xJ

p)

min{F (w)[ψJ
p ],0}, w(xJ

p) = b(xJ
p)

‖F̂ (w)‖(VJ )′ < tol =⇒ w solves NCP
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DEFECT CONSTRAINT

suppose:
I bJ is fine-level bed elevation
I wJ is admissible fine-level iterate (wJ ≥ bJ )

define defect constraint and defect constraint set:

χJ = bJ − wJ

DJ =
{

v ≥ χJ
}
⊂ VJ

I notice χJ ≤ 0

I wJ + zJ is admissible if and only if zJ ∈ DJ
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DECOMPOSE THE DEFECT CONSTRAINT

Tai (2003): decompose the fine-level defect constraint onto
coarser meshes using monotone restriction
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DECOMPOSE THE DEFECT CONSTRAINT

monotone restriction operator R⊕ : V j → V j−1:

R⊕z =

mj−1∑
p=1

max{zq : ψj−1
p (x j

q) > 0}ψj−1
p

I observe R⊕z ≥ z

for j = 1, . . . , J let
χj−1 = R⊕χj

I also define χ−1 = 0

gaps between defect constraints: φj = χj − χj−1

telescoping-sum:

J∑
j=0

φj = χ0 + (χ1 − χ0) + (χ2 − χ1) + · · ·+ (χJ − χJ−1) = χJ
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MULTILEVEL CONSTRAINT DECOMPOSITION (MCD)

let
Dj = {v ≥ χj}, Kj = {v ≥ φj}

Tai (2003): decomposition of the fine-level defect constraint
set DJ by cones Dj = K0 + · · ·+Kj from the inside

X3

X2

X1

X0

0

V3

D0 =K0

D1 =K0 +K1

D2 =K0 +K1 +K2

D3 =K0 +K1 +K2 +K3

y3 ∈ K3

y2 ∈ K2

y1 ∈ K1

y0 ∈ K0

z1 ∈ D1
z2 ∈ D2

z3 ∈ D3
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MULTILEVEL CONSTRAINT DECOMPOSITION (MCD)

dishonest attempt to illustrate MCD as decomposition of ice:
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FAS-TYPE COARSE CORRECTIONS

now add an idea not in Tai (2003)
suppose:
I g j is solution iterate on current level
I down-smoother computes y j ∈ Kj

I new solution iterate is g̃ j = g j + y j

nonlinear coarse correction needs to restrict residual and g̃ j

I full approximation scheme (FAS)
I in formulas:

F = N j (g̃ j )− f j

g j−1 = R•g̃ j

f j−1 = N j−1(g j−1)− RF

where R• is state restriction (e.g. injection)
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PUT IT TOGETHER: NONLINEAR MCD ALGORITHM

NMCD-VCYCLE(J,wJ , χJ):
gJ = wJ

for j = J downto j = 1
χj−1 = R⊕χj

φj = χj − Pχj−1

y j = 0
SMOOTHERdown(j, g j , y j ,N j , f j , φj)

F = N j(g j + y j)− f j

g j−1 = R•(g j + y j)

f j−1 = N j−1(g j−1)− RF
y0 = 0
SMOOTHERcoarse(0, g0, y0,N0, f 0, χ0)

z0 = y0

for j = 1 to j = J
z j = Pz j−1 + y j

SMOOTHERup(j, g j , z j ,N j , f j , χj)

return zJ

y3 ∈ K3

y2 ∈ K2

y1 ∈ K1

y0 ∈ K0

z1 ∈ D1
z2 ∈ D2

z3 ∈ D3

↑

up-smoothing corrections
act in larger sets
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WHAT IS A GOOD SIA SMOOTHER?

SIA residual is local
I (degenerate) elliptic differential operator

pointwise smoothers adequate:
I projected nonlinear Gauss-Seidel (PNGS)
I projected nonlinear Jacobi (PNJacobi; below)

PNJACOBI(j ,g j , y j ,N j , f j ,bj ,newtonits = 2,omega = 0.67):
for k = 1, . . . ,newtonits

ρp(c) := N j (g j + y j + cψj
p)[ψj

p]− f j [ψj
p]

rp, δp = ρp(0), ρ′p(0)
for p = 1, . . . ,mj

c = POINTUPDATE(rp, δp, yp,bp, f j [ψj
p])

yp ← yp + omega c
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SIA RESULTS

compare PNGS and PNJacobi smoothers
GMG v-cycle factors < 1 for SIA
I up-smoothing preferred, thus V (0,2)
I evidence of mesh independence?
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WHAT IS A GOOD STOKES SMOOTHER?

Stokes residual non-local!
I have only beginnings of smoother ideas
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SUMMARY AND OUTLOOK

goal: GMG for implicit glacier geometry evolution
much of the tool-chain exists:
I backward Euler or other stiff scheme
I NCP or VI for free-boundary problem at each time step
I nonlinear MCD solution of the VI

◦ a form of GMG

mostly implemented in Firedrake
I extruded mesh
I mixed-element, GMG solution of Stokes equations

outlook for entire approach depends on constructing
a performant smoother for Stokes dynamics

I’m kind of stuck, and seeking help!
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extra: COMPLETE STRONG FORM

solve one step of backward Euler for s,u,p
system of NCP coupled to Stokes problem:

s − b ≥ 0 on Ω

s −∆t u|s · ns − (so + ∆t a) ≥ 0 ”
(s − b)(s −∆t u|s · ns − (so + ∆t a)) = 0 ”

−∇ · (2νε(Du) Du) +∇p − ρig = 0 on Λs

∇ · u = 0 ”
u = 0 on Γ0

(2νε(Du)Du− pI) n = 0 on ∂Λs \ Γ0

I with regularized Glen-law effective viscosity (p = 1
n + 1):

νε(Du) =
Γ

2
(
|Du|2 + εD2

0
)(p−2)/2


