PISM, A Parallel Ice Sheet Model  stable v2.1-1-g6902d5502 committed by Ed Bueler on 2023-12-20 08:38:27 -0800

This large list collects all references which the PISM authors have found convenient. There is no claim that all of these references get direct use, or even mention, in the PISM project files.

  1. M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Graduate Studies in Mathematics. Dover, New York, 1965.
  2. D. J. Acheson. Elementary Fluid Dynamics. Oxford University Press, Oxford, 1990.
  3. G Adalgeirsdottir, A. Aschwanden, C. Khroulev, F. Boberg, R. Mottram, P. Lucas-Picher, and J. H. Christensen. Role of model initialization for projections of 21st-century greenland ice sheet mass loss. J. Glaciol., 60(222):782–794, 2014. doi:10.3189/2014JoG13J202.
  4. AIAA. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations. Technical Report AIAA G-077-1998, American Institute of Aeronautics and Astronautics (AIAA), 1998.
  5. T. Albrecht and A. Levermann. Fracture field for large-scale ice dynamics. J. Glaciol., 58(207):165–176, 2012. doi:10.3189/2012JoG11J191.
  6. T. Albrecht and A. Levermann. Fracture-induced softening for large-scale ice dynamics. The Cryosphere, 8(2):587–605, 2014. doi:10.5194/tc-8-587-2014.
  7. T. Albrecht and A. Levermann. Spontaneous ice-front retreat induced by disintegration of adjacent ice shelf in antarctica. Earth Planet. Sci. Lett., 393:26–30, 2014. doi:10.1016/j.epsl.2014.02.034.
  8. T. Albrecht, M. Martin, M. Haseloff, R. Winkelmann, and A. Levermann. Parameterization for subgrid-scale motion of ice-shelf calving fronts. The Cryosphere, 5:35–44, 2011.
  9. Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann. Glacial-cycle simulations of the antarctic ice sheet with the parallel ice sheet model (pism)–part 1: boundary conditions and climatic forcing. Cryosphere, 14(2):599–632, 2020.
  10. Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann. Glacial-cycle simulations of the antarctic ice sheet with the parallel ice sheet model (pism)–part 2: parameter ensemble analysis. Cryosphere, 14(2):633–656, 2020.
  11. R. Alonso, M. Santillana, and C. Dawson. On the diffusive wave approximation of the shallow water equations. Eur. J. Appl. Math., 19(5):575–606, 2008.
  12. J. M. Amundson, M. Fahnestock, M. Truffer, J. Brown, M. P. Lüthi, and R. J. Motyka. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland. J. Geophys. Res., 2010. F01005. doi:10.1029/2009JF001405.
  13. U. Ascher and L. Petzold. Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations. SIAM Press, Philadelphia, PA, 1998.
  14. A. Aschwanden, G. Adalgeirsdóttir, and C. Khroulev. Hindcasting to measure ice sheet model sensitivity to initial states. The Cryosphere, 7:1083–1093, 2013. doi:10.5194/tc-7-1083-2013.
  15. A. Aschwanden and H. Blatter. Meltwater production due to strain heating in Storglaciären, Sweden. J. Geophys. Res., 2005. F04024. doi:10.1029/2005JF000328.
  16. A. Aschwanden and H. Blatter. Mathematical modeling and numerical simulation of polythermal glaciers. J. Geophys. Res., 2009. F01027. doi:10.1029/2008JF001028.
  17. A. Aschwanden, E. Bueler, C. Khroulev, and H. Blatter. An enthalpy formulation for glaciers and ice sheets. J. Glaciol., 58(209):441–457, 2012. doi:10.3189/2012JoG11J088.
  18. Andy Aschwanden, Mark A Fahnestock, Martin Truffer, Douglas J Brinkerhoff, Regine Hock, Constantine Khroulev, Ruth Mottram, and S Abbas Khan. Contribution of the greenland ice sheet to sea level over the next millennium. Science Advances, 5(6):eaav9396, 2019.
  19. P. Bak. How nature works: the science of self-organized criticality. Springer, 1999.
  20. N. Baker. The influence of subglacial hydrology on the flow of West Antarctic ice streams. PhD thesis, Trinity College, Scott Polar Research Institute, University of Cambridge, 2012.
  21. S. Balay and others. PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.15, Argonne National Laboratory, 2021.
  22. Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, 163–202. Birkhäuser Press, 1997.
  23. R.C. Bales, J.R. McConnell, E. Mosley-Thompson, and G. Lamorey. Accumulation map for the Greenland Ice Sheet: 1971-1990. Geophys. Res. Lett, 28(15):2967–2970, 2001. doi:10.1029/2000GL012052.
  24. M. Balise and C. Raymond. Transfer of basal sliding variations to the surface of a linearly-viscous glacier. J. Glaciol., 31(109):308–318, 1985.
  25. J. L. Bamber and ten others. A new bed elevation dataset for Greenland. The Cryosphere, 7(2):499–510, 2013. doi:10.5194/tc-7-499-2013.
  26. J. L. Bamber, D. G. Vaughan, and I. Joughin. Widespread complex flow in the interior of the Antarctic ice sheet. Science, 287:1248–1250, 2000.
  27. J.L. Bamber, R.L. Layberry, and S.P. Gogenini. A new ice thickness and bed data set for the Greenland ice sheet 1: Measurement, data reduction, and errors. J. Geophys. Res., 106 (D24):33,773–33,780, 2001.
  28. D. R. Baral, K. Hutter, and R. Greve. Asymptotic theories of large-scale motion, temperature, and moisture distribution in land-based polythermal ice sheets: A critical review and new developments. Appl. Mech. Rev., 54(3):215–256, 2001. doi:10.1115/1.3097296.
  29. G. I. Barenblatt. On some unsteady motions of fluids and gases in a porous medium. Prikl. Mat. Mekh., 16(1):67–78, 1952.
  30. G. I. Barenblatt. Scaling, Self-similarity and Intermediate Asymptotics. Cambridge Univ. Press, 1996.
  31. T. C. Bartholomaus, R. S. Anderson, and S. P. Anderson. Response of glacier basal motion to transient water storage. Nature Geosci., 1:33–37, 2008. doi:10.1038/ngeo.2007.52.
  32. T. C. Bartholomaus, R. S. Anderson, and S. P. Anderson. Growth and collapse of the distributed subglacial hydrologic system of Kennicott Glacier, Alaska, USA, and its effects on basal motion. J. Glaciol., 57(206):985–1002, 2011.
  33. G. Batchelor. An Introduction to Fluid Dynamics. Cambridge Univ. Press, 1967.
  34. A Beckmann and H Goosse. A parameterization of ice shelf-ocean interaction for climate models. Ocean Modelling, 5(2):157–170, 2003. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500302000197.
  35. C. R. Bentley. Glaciological studies on the Ross Ice Shelf, Antarctica, 1973–1978. Antarctic Research Series, 42(2):21–53, 1984.
  36. C. R. Bentley. The Ross Ice shelf Geophysical and Glaciological Survey (RIGGS): Introduction and summary of measurments performed. Antarctic Research Series, 42(1):1–20, 1984.
  37. André L. Berger. Long-term variations of daily insolation and quaternary climatic changes. Journal of the Atmospheric Sciences, 35(12):2362–2367, dec 1978. doi:10.1175/1520-0469(1978)035<2362:ltvodi>2.0.co;2.
  38. R. Bindschadler and twenty-seven others. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea-level (The SeaRISE Project). J. Glaciol, 59(214):195–224, 2013.
  39. H. Blatter. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41(138):333–344, 1995.
  40. H. Blatter and R. Greve. Comparison and verification of enthalpy schemes for polythermal glaciers and ice sheets with a one-dimensional model. Polar Science, 9(2):196–207, 2015.
  41. G. Bodvardsson. On the flow of ice-sheets and glaciers. Jökull, 5:1–8, 1955.
  42. Paul D. Bons, Daniela Jansen, Felicitas Mundel, Catherine C. Bauer, Tobias Binder, Olaf Eisen, Mark W. Jessell, Maria-Gema Llorens, Florian Steinbach, Daniel Steinhage, and Ilka Weikusat. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet. Nature Communications, apr 2016. doi:10.1038/ncomms11427.
  43. A. Born and A. Robinson. Modeling the Greenland englacial stratigraphy. The Cryosphere, 15(9):4539–4556, 2021. doi:10.5194/tc-15-4539-2021.
  44. Andreas Born. Tracer transport in an isochronal ice-sheet model. Journal of Glaciology, 63(237):22–38, oct 2016. doi:10.1017/jog.2016.111.
  45. Chris Borstad, Ala Khazendar, Bernd Scheuchl, Mathieu Morlighem, Eric Larour, and Eric Rignot. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant larsen b ice shelf. Geophysical Research Letters, 43(5):2027–2035, 2016.
  46. CP Borstad, E Rignot, J Mouginot, and MP Schodlok. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to larsen c ice shelf. The Cryosphere, 7(6):1931–1947, 2013.
  47. M Bougamont, S Price, P Christoffersen, and AJ Payne. Dynamic patterns of ice stream flow in a 3-D higher-order ice sheet model with plastic bed and simplified hydrology. J. Geophys. Res.: Earth Surface, 2011.
  48. J. E. Box and K. Steffen. Sublimation on the Greenland ice sheet from automated weather station observations. J. Geophys. Res., 106(D24):33965–33981, 2001.
  49. Ronald N. Bracewell. The Fourier Transform and Its Applications. McGraw-Hill Book Company, New York, 2nd edition, 1978.
  50. D. Braess. Finite Elements: Theory, fast solvers, and applications in elasticity theory. Cambridge University Press, 3rd edition, 2007.
  51. William L. Briggs and Van Emden Henson. The DFT: An Owner's Manual for the Discrete Fourier Transform. SIAM Press, Philadelphia, 1995.
  52. William L. Briggs, Van Emden Henson, and Steve F. McCormick. A multigrid tutorial. SIAM, 2000.
  53. A. M. Le Brocq, A. J Payne, and M. J Siegert. West Antarctic balance calculations: Impact of flux-routing algorithm, smoothing algorithm and topography. Computers &amp; Geosciences, 32(10):1780–1795, 2006. URL: http://www.sciencedirect.com/science/article/pii/S0098300406000781, doi:10.1016/j.cageo.2006.05.003.
  54. K. Broughan. Periodicity in an energy balance climate model. Nonlinear Analysis, 30(8):4995–5002, 1997.
  55. J. Brown. Verifying PISM. UAF Master's project presentation, 2006. URL: https://www.pism.io/uaf-iceflow/slidesJBrown.pdf.
  56. J. Brown. Efficient nonlinear solvers for nodal high-order finite elements in 3D. J. Sci. Comput., 45:48–63, 2010. doi:10.1007/s10915-010-9396-8.
  57. J. W. Brown and R. V. Churchill. Fourier Series and Boundary Value Problems. McGraw-Hill, 6th edition, 2000.
  58. Jed Brown, Barry Smith, and Aron Ahmadia. Achieving textbook multigrid efficiency for hydrostatic ice sheet flow. SIAM J. Sci. Comp., 35(2):B359–B375, 2013.
  59. E. Bueler. An exact solution to the temperature equation in a column of ice and bedrock. preprint \texttt arXiv:0710.1314, 2007.
  60. E. Bueler. An exact solution for a steady, flow-line marine ice sheet. J. Glaciol., 60(224):1117–1125, 2014.
  61. E. Bueler. Correspondence: Extensions of the lumped subglacial-englacial hydrology model of Bartholomaus and others (2011). J. Glaciol., 60(222):808–810, 2014.
  62. E. Bueler and J. Brown. On exact solutions and numerics for cold, shallow, and thermocoupled ice sheets. preprint \texttt arXiv:physics/0610106, 2006.
  63. E. Bueler and J. Brown. Shallow shelf approximation as a “sliding law” in a thermodynamically coupled ice sheet model. J. Geophys. Res., 2009. F03008. doi:10.1029/2008JF001179.
  64. E. Bueler, J. Brown, and C. Lingle. Exact solutions to the thermomechanically coupled shallow ice approximation: effective tools for verification. J. Glaciol., 53(182):499–516, 2007.
  65. E. Bueler, C. S. Lingle, and J. A. Kallen-Brown. Computation of a combined spherical-elastic and viscous-half-space Earth model for ice sheet simulation. preprint \texttt arXiv:physics/0606074, 2006.
  66. E. Bueler, C. S. Lingle, and J. A. Kallen-Brown. Fast computation of a viscoelastic deformable Earth model for ice sheet simulation. Ann. Glaciol., 46:97–105, 2007.
  67. E. Bueler, C. S. Lingle, J. A. Kallen-Brown, D. N. Covey, and L. N. Bowman. Exact solutions and verification of numerical models for isothermal ice sheets. J. Glaciol., 51(173):291–306, 2005. doi:10.3189/172756505781829449.
  68. E. Bueler and W. van Pelt. Mass-conserving subglacial hydrology in the parallel ice sheet model version 0.6. Geoscientific Model Development, 8(6):1613–1635, 2015. doi:10.5194/gmd-8-1613-2015.
  69. Ed Bueler. Numerical approximation of a two–dimensional thermomechanical model for ice flow. Dept. of Mathematical Sciences Tech. Rep. 02-02, University of Alaska, Fairbanks, 2002.
  70. Ed Bueler. Lessons from the short history of ice sheet model intercomparison. The Cryosphere Discussions, 2:399–412, 2008. doi:10.5194/tcd-2-399-2008.
  71. Ed Bueler, Constantine Khroulev, Andy Aschwanden, Ian Joughin, and Ben E. Smith. Modeled and observed fast flow in the Greenland ice sheet. submitted, 2009.
  72. Richard L. Burden and J. Douglas Faires. Numerical Analysis. Brooks/Cole, Pacific Grove, CA, seventh edition, 2001.
  73. E.W. Burgess, R.R. Forster, J.E. Box, E. Mosley-Thompson, D.H. Bromwich, R.C. Bales, and L.C. Smith. A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007). J. Geophys. Res., 2010. doi:10.1029/2009JF001293.
  74. R. Calov, R. Greve, A. Abe-Ouchi, E. Bueler, P. Huybrechts, J. V. Johnson, F. Pattyn, D. Pollard, C. Ritz, F. Saito, and L. Tarasov. Results from the ice sheet model intercomparison project—Heinrich event intercomparison (ISMIP HEINO). J. Glaciol, 56(197):371–383, 2010.
  75. Reinhard Calov and Ralf Greve. Correspondence: A semi-analytical solution for the positive degree-day model with stochastic temperature variations. J. Glaciol, 51(172):173–175, 2005.
  76. Reinhard Calov and Ralf Greve. ISMIP-HEINO Ice Sheet Model Intercomparison Project: Heinrich Event INtercOmparison. 2008. URL: http://www.pik-potsdam.de/~calov/heino.html.
  77. N. Calvo, J. Díaz, and C. Vázquez. Numerical approach of temperature distribution in a free boundary model for polythermal ice sheets. Numer. Math., 83:557–580, 1999.
  78. N. Calvo, J. Durany, and C. Vázquez. Numerical computation of ice sheet profiles with free boundary models. Appl. Numer. Math., 35:111–128, 2000.
  79. N. Calvo, J. Durany, and C. Vázquez. Numerical approach of thermomechanical coupled problems with moving boundaries in theoretical glaciology. Math. Models and Methods in Appl. Sci., 12(2):229–248, 2002.
  80. G. F. Carey and six others. Modelling error and constitutive relations in simulation of flow and transport. Int. J. Numer. Meth. Fluids, 46:1211–1236, 2004.
  81. L. M. Cathles. The Viscosity of the Earth's Mantle. Princeton University Press, Princeton, NJ, 1975.
  82. S. De La Chapelle, O. Castelnau, V. Lipenkov, and P. Duval. Dynamic recrystallization and texture development in ice as revealed by the study of deep cores in Antarctica and Greenland. J. Geophys. Res., 103(B3):5091–5105, 1998.
  83. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. SIAM Press, 2002. Reprint of the 1978 original.
  84. P. U. Clark, R. B. Alley, and D. Pollard. Northern Hemisphere ice-sheet influences on global climate change. Science, 286(5442):1104–1111, 1999. doi:10.1126/science.286.5442.1104.
  85. G. K. C. Clarke. Subglacial processes. Annu. Rev. Earth Planet. Sci., 33:247–276, 2005. doi:10.1146/annurev.earth.33.092203.122621.
  86. G. K.C. Clarke. Hydraulics of subglacial outburst floods: new insights from the Spring-Hutter formulation. J. Glaciol., 49(165):299–313, 2003. doi:10.3189/172756503781830728.
  87. K. Cliffe and L. Morland. A thermo-mechanically coupled test case for axi-symmetric ice sheet flow. Continuum Mechanics and Thermodynamics, 13:135–148, 2001.
  88. G. Cogley and others. Glossary of Mass-Balance and Related Terms. IACS Working Group on Mass-balance Terminology and Methods, Draft 3, 10 July, 2009. URL: https://unesdoc.unesco.org/ark:/48223/pf0000192525_eng.
  89. JG Cogley, R Hock, LA Rasmussen, AA Arendt, A Bauder, RJ Braithwaite, P Jansson, G Kaser, M Möller, L Nicholson, and others. Glossary of glacier mass balance and related terms. IHP-VII technical documents in hydrology, 86:965, 2011.
  90. Jacques Colinge and Jacques Rappaz. A strongly nonlinear problem arising in glaciology. M2AN Math. Model. Numer. Anal., 33(2):395–406, 1999.
  91. J. Comiso. Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Climate, 13:1674–1696, 2000.
  92. S. Cornford, D. Martin, D. Graves, D. Ranken, A. Le Brocq, R. Gladstone, A. Payne, E. Ng, and W. Lipscomb. Adaptive mesh, finite volume modeling of marine ice sheets. J. Computational Physics, 232(1):529 – 549, 2013. doi:10.1016/j.jcp.2012.08.037.
  93. T. Creyts and C. Schoof. Drainage through subglacial water sheets. J. Geophys. Res., 2009. doi:10.1029/2008JF001215.
  94. K. M. Cuffey and W. S. B. Paterson. The Physics of Glaciers. Elsevier, 4th edition, 2010.
  95. W. Dansgaard and ten others. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364:218–220, 1993.
  96. Sarah B. Das, Ian Joughin, Mark D. Behn, Ian M. Howat, Matt A. King, Dan Lizarralde, and Maya P. Bhatia. Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage. Science, 320(5877):778–781, 2008. doi:10.1126/science.1153360.
  97. B. de Fleurian, O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, and P. Råback. A double continuum hydrological model for glacier applications. The Cryosphere, 8(1):137–153, 2014. doi:10.5194/tc-8-137-2014.
  98. W. DeFoor, M. Person, H. C. Larsen, D. Lizarralde, D. Cohen, and B. Dugan. Ice sheet-derived submarine groundwater discharge on Greenland's continental shelf. Water Resour. Res., 2011. doi:10.1029/2011WR010536.
  99. D. DellaGiustina. Regional modeling of Greenland's outlet glaciers with the Parallel Ice Sheet Model. Master's thesis, University of Alaska, Fairbanks, 2011. M.S. Computational Physics.
  100. J. Van den Berg, R. S. W. Van de Wal, and J. Oerlemans. Effects of spatial discretization in ice-sheet modelling using the shallow-ice approximation. J. Glaciol., 52(176):89–98, 2006.
  101. M. A. G. den Ouden, C. H. Reijmer, V. Pohjola, R. S. W. van de Wal, J. Oerlemans, and W. Boot. Stand-alone single-frequency GPS ice velocity observations on Nordenskiöldbreen, Svalbard. The Cryosphere, 4(4):593–604, 2010. doi:10.5194/tc-4-593-2010.
  102. E. DiBenedetto. Degenerate Parabolic Equations. Springer-Verlag, Berlin, 1993.
  103. P. Dickens and T. Morey. Increasing the scalability of PISM for high resolution ice sheet models. In Proceedings of the 14th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing, May 2013, Boston. 2013.
  104. John K. Dukowicz, Stephen F. Price, and William H. Lipscomb. Consistent approximations and boundary conditions for ice-sheet dynamics from a principle of least action. Journal of Glaciology, 56(197):480–496, 2010. doi:10.3189/002214310792447851.
  105. G. Duvaut and J. L. Lions. Inequalities in Mechanics and Physics. Springer, 1976.
  106. T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, Philippe Huybrechts, a. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz. Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet. The Cryosphere, 8(1):181–194, jan 2014. doi:10.5194/tc-8-181-2014.
  107. D. Egholm, M. Knudsen, C. Clark, and J. Lesemann. Modeling the flow of glaciers in steep terrains: the integrated second-order shallow ice approximation (iSOSIA). J. Geophys. Res.: Earth Surface, 2011. doi:10.1029/2010JF001900.
  108. D. Egholm and S. Nielsen. An adaptive finite volume solver for ice sheets and glaciers. J. Geophys. Res.: Earth Surface, 2010. doi:10.1029/2009JF001394.
  109. O. Eisen. Inference of velocity pattern from isochronous layers in firn, using an inverse method. J. Glaciol., 54(187):613–630, 2008.
  110. Stanley C. Eisenstat and Homer F. Walker. Choosing the forcing terms in an inexact newton method. SIAM Journal on Scientific Computing, 17(1):16–32, jan 1996. doi:10.1137/0917003.
  111. H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Oxford University Press, 2005.
  112. ERCOFTAC. Best Practices Guidelines for Industrial Computational Fluid Dynamics. Technical Report, European Research Community On Flow, Turbulence And Combustion (ERCOFTAC), 2000. Version 1.0.
  113. J. Ettema, M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box, and R. C. Bales. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Let., 2009. doi:10.1029/2009GL038110.
  114. Lawrence C. Evans. Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society, 1998.
  115. M. Fahnestock, W. Abdalati, I. Joughin, J. Brozena, and P. Gogineni. High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science, 294:2338–2342, 2001.
  116. W. E. Farrell. Deformation of the earth by surface loads. Rev. Geophysics and Space Physics, 10(3):761–797, 1972.
  117. James L. Fastook. A computationally efficient bedrock isostacy model. unpublished, 1999.
  118. R. S. Fausto, A. P. Ahlstrom, D. Van As, C. E. Boggild, and S. J. Johnsen. A new present-day temperature parameterization for Greenland. J. Glaciol., 55(189):95–105, 2009.
  119. J. Feldmann, T. Albrecht, C. Khroulev, F. Pattyn, and A. Levermann. Resolution-dependent performance of grounding line motion in a shallow model compared to a full-Stokes model according to the MISMIP3d intercomparison. J. Glaciol., 60(220):353–360, 2014. doi:10.3189/2014JoG13J093.
  120. G. E. Flowers and G. K. C. Clarke. A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples. J. Geophys. Res., 107(B11):2287, 2002. doi:10.1029/2001JB001122.
  121. G. E. Flowers and G. K. C. Clarke. A multicomponent coupled model of glacier hydrology 2. Application to Trapridge Glacier, Yukon, Canada. J. Geophys. Res., 107(B11):2288, 2002. doi:10.1029/2001JB001124.
  122. G. E. Flowers, S. J. Marshall, H. Björnsson, and G. K. C. Clarke. Sensitivity of Vatnajökull ice cap hydrology and dynamics to climate warming over the next 2 centuries. J. Geophys. Res., 2005. doi:10.1029/2004JF000200.
  123. Arne Foldvik and Thor Kvinge. Conditional instability of sea water at the freezing point. In Deep Sea Research and Oceanographic Abstracts, volume 21, 169–174. Elsevier, 1974.
  124. D. Fong and M. Saunders. LSMR: An iterative algorithm for sparse least-squares problems. SIAM J. Sci. Computing, 33(5):2950–2971, 2011.
  125. A. C. Fowler. Modelling ice sheet dynamics. Geophysical & Astrophysical Fluid Dynamics, 63:29–65, 1992.
  126. A. C. Fowler. Glaciers and ice sheets. In J. I. Díaz, editor, The Mathematics of Models for Climatology and Environment, volume 48, 301–336. Springer, 1997.
  127. A. C. Fowler. Mathematical Models in the Applied Sciences. Cambridge Univ. Press, 1997.
  128. A. C. Fowler and D. A. Larson. On the flow of polythermal glaciers. I. Model and preliminary analysis. Proc. R. Soc. Lond. A, 363:217–242, 1978.
  129. Andrew C. Fowler. Modelling the flow of glaciers and ice sheets. In Brian Straughan and others, editors, Continuum Mechanics and Applications in Geophysics and the Environment, 201–221. Springer, 2001.
  130. P Fretwell, Hamish D Pritchard, David G Vaughan, JL Bamber, NE Barrand, R Bell, C Bianchi, RG Bingham, DD Blankenship, G Casassa, and others. Bedmap2: improved ice bed, surface and thickness datasets for antarctica. The Cryosphere, 7:375–393, 2013.
  131. Anver Friedman. Variational inequalities and free boundary problems. Wiley Interscience, 1982.
  132. O. Gagliardini and T. Zwinger. The ISMIP-HOM benchmark experiments performed using the Finite-Element code Elmer. The Cryosphere, 2(1):67–76, 2008. doi:10.5194/tc-2-67-2008.
  133. M. Galassi and others. GNU Scientific Library Reference Manual. 2006. URL: http://www.gnu.org/software/gsl/.
  134. Julius Garbe, Maria Zeitz, Uta Krebs-Kanzow, and Ricarda Winkelmann. The evolution of future Antarctic surface melt using PISM-dEBM-simple. The Cryosphere, 17(11):4571–4599, nov 2023. doi:10.5194/tc-17-4571-2023.
  135. F. Gillet-Chaulet and others. A user-friendly anisotropic flow law for ice-sheet modelling. J. Glaciol., 51(172):3–14, 2005.
  136. R. M. Gladstone, A. J. Payne, and S. L. Cornford. Parameterising the grounding line in flow-line ice sheet models. The Cryosphere, 4:605–619, 2010. doi:10.5194/tc-4-605-2010.
  137. J. W. Glen. The creep of polycrystalline ice. Proc. Royal Soc. London A, 228:519–538, 1955.
  138. Roland Glowinski and Jacques Rappaz. Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. M2AN Math. Model. Numer. Anal., 37(1):175–186, 2003.
  139. S. Goeller, M. Thoma, K. Grosfeld, and H. Miller. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models. The Cryosphere, 7(4):1095–1106, 2013.
  140. D. Goldberg. A variationally derived, depth-integrated approximation to a higher-order glaciological flow model. J. Glaciol., 57(201):157–170, 2011.
  141. D. Goldberg, D. M. Holland, and C. Schoof. Grounding line movement and ice shelf buttressing in marine ice sheets. J. Geophys. Res., 2009. doi:10.1029/2008JF001227.
  142. D. L. Goldsby and D. L. Kohlstedt. Grain boundary sliding in fine-grained ice I. Scripta Materialia, 37(9):1399–1406, 1997.
  143. D. L. Goldsby and D. L. Kohlstedt. Superplastic deformation of ice: experimental observations. J. Geophys. Res., 106(M6):11017–11030, 2001.
  144. N. Golledge, C. Fogwill, A. Mackintosh, and K. Buckley. Dynamics of the Last Glacial Maximum Antarctic ice-sheet and its response to ocean forcing. Proc. Nat. Acad. Sci., 109(40):16052–16056, 2012. doi:10.1073/pnas.1205385109.
  145. N. Golledge, A. Mackintosh, and 8 others. Last Glacial Maximum climate in New Zealand inferred from a modelled Southern Alps icefield. Quaternary Science Reviews, 46:30–45, 2012. doi:10.1016/j.quascirev.2012.05.004.
  146. N. Golledge and twelve others. Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet. Quaternary Sci. Rev., 78(0):225–247, 2013. doi:10.1016/j.quascirev.2013.08.011.
  147. N. R. Golledge, L. Menviel, L. Carter, C. J. Fogwill, M. H. England, G. Cortese, and R. H. Levy. Antarctic contribution to meltwater pulse 1a from reduced southern ocean overturning. Nature Communications, 2014. doi:10.1038/ncomms6107.
  148. G. Golub and C. Van Loan. Matrix Computations. JHU Press, 4th edition, 2012.
  149. C. Gräser and R. Kornhuber. Multigrid methods for obstacle problems. J. Comp. Math., 27(1):1–44, 2009.
  150. A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM Press, 1997.
  151. R. Greve. A continuum–mechanical formulation for shallow polythermal ice sheets. Phil. Trans. Royal Soc. London A, 355:921–974, 1997.
  152. R. Greve. Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet. Ann. Glaciol., 42:424–432, 2005.
  153. R. Greve and H. Blatter. Dynamics of Ice Sheets and Glaciers. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, 2009.
  154. R. Greve, Y. Wang, and B. Mügge. Comparison of numerical schemes for the solution of the advective age equation in ice sheets. Ann. Glaciol., 35:487–494, 2002.
  155. Ralf Greve. Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to steady-state and transient climate scenarios. J. Climate, 10(5):901–918, 1997.
  156. Ralf Greve. On the response of the Greenland ice sheet to greenhouse climate change. Climatic Change, 46:289–303, 2000.
  157. Ralf Greve. Glacial isostasy: Models for the response of the Earth to varying ice loads. In Brian Straughan and others, editors, Continuum Mechanics and Applications in Geophysics and the Environment, 307–325. Springer, 2001.
  158. Ralf Greve. Dynamics of ice sheets and glaciers. Lecture notes Sapporo, 2005.
  159. Ralf Greve, Ryoji Takahama, and Reinhard Calov. Simulation of large-scale ice-sheet surges: the ISMIP-HEINO experiments. Polar Meteorol. Glaciol., 20:1–15, 2006.
  160. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the Message-Passing Interface. MIT Press, 2nd edition, 1999.
  161. K. Grosfeld and F. Thyssen. Temperature investigation and modeling on the Filchner-Ronne Ice Shelf, Antarctica. Ann. Glaciol., 20:377–385, 1994.
  162. G. H. Gudmundsson. Analytical solutions for the surface response to small amplitude perturbations in boundary data in the shallow-ice-stream approximation. The Cryosphere, 2(2):77–93, 2008.
  163. G. Hilmar Gudmundsson. Transmission of basal variability to a glacier surface. J. Geophys. Res., 2003. doi:10.1029/2002JB002107.
  164. M. Habermann, D. Maxwell, and M. Truffer. Reconstruction of basal properties in ice sheets using iterative inverse methods. J. Glaciol., 58:795–807, 2012.
  165. M. Habermann, M. Truffer, and D. Maxwell. Changing basal conditions during the speed-up of Jakobshavn Isbrae, Greenland. The Cryosphere, 7(6):1679–1692, 2013. doi:10.5194/tc-7-1679-2013.
  166. Jacques Hadamard. Sur les problèmes aux dérivés partielles et leur signification physique. Princeton University Bulletin, 13:49–52, 1902.
  167. Magnus K. M. Hagdorn. Reconstruction of the past and forecast of the future European and British ice sheets and associated sea level change. PhD thesis, The University of Edinburgh, 2003.
  168. P. Halfar. On the dynamics of the ice sheets. J. Geophys. Res., 86(C11):11065–11072, 1981.
  169. P. Halfar. On the dynamics of the ice sheets 2. J. Geophys. Res., 88(C10):6043–6051, 1983.
  170. Martin Hanke. Conjugate Graident Type Methods for Ill-posed Problems. Volume 327 of Pitman Research Notes in Mathematics. Longman Scientific & Technical, 1995.
  171. J. Harper, J. Bradford, N. Humphrey, and T. Meierbachtol. Vertical extension of the subglacial drainage system into basal crevasses. Nature, 467(7315):579–582, 2010. doi:10.1038/nature09398.
  172. Hartmut H. Hellmer, Stanley S. Jacobs, and Adrian Jenkins. Oceanic erosion of a floating Antarctic glacier in the Amundsen Sea. American Geophysical Union, 1998.
  173. HH Hellmer and DJ Olbers. A two-dimensional model for the thermohaline circulation under an ice shelf. Antarctic Science, 1(04):325–336, 1989.
  174. I. J. Hewitt. Modelling distributed and channelized subglacial drainage: the spacing of channels. J. Glaciol., 57(202):302–314, 2011.
  175. I. J. Hewitt. Seasonal changes in ice sheet motion due to melt water lubrication. Earth Planet. Sci. Lett., 371–372:16–25, 2013. doi:10.1016/j.epsl.2013.04.022.
  176. I. J. Hewitt, C. Schoof, and M. A. Werder. Flotation and free surface flow in a model for subglacial drainage. Part II: Channel flow. J. Fluid Mech., 702:157–188, 2012.
  177. D. Higham and L. N. Trefethen. Stiffness of ODEs. BIT, 33:285–303, 1993.
  178. A. C Hindmarsh. ODEPACK, A Systematized Collection of ODE Solvers. IMACS Transactions on Scientific Computation, 1:55–64, 1983. edited by Stepleman et al.
  179. R. Hindmarsh, G. Leysinger Vieli, and and F. Parrenin. A large-scale numerical model for computing isochrone geometry. Ann. Glaciol., 50(51):130–140, 2009.
  180. R. C. A. Hindmarsh. Time–scales and degrees of freedom operating in the evolution of continental ice sheets. Trans. R. Soc. Edinburgh, Ser. Earth Sci., 81(4):371–384, 1990.
  181. R. C. A. Hindmarsh. Notes on basic glaciological computational methods and algorithms. In Brian Straughan and others, editors, Continuum Mechanics and Applications in Geophysics and the Environment, 222–249. Springer, 2001.
  182. R. C. A. Hindmarsh. A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling. J. Geophys. Res., 2004. doi:10.1029/2003JF000065.
  183. R. C. A. Hindmarsh. Thermoviscous stability of ice-sheet flows. J. Fluid Mech., 502:17–40, 2004.
  184. R. C. A. Hindmarsh. Stress gradient damping of thermoviscous ice flow instabilities. J. Geophys. Res., 2006. doi:10.1029/2005JB004019.
  185. R. C. A. Hindmarsh and A. J. Payne. Time–step limits for stable solutions of the ice–sheet equation. Ann. Glaciol., 23:74–85, 1996.
  186. Richard C. A. Hindmarsh. The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheets: back pressure and grounding line motion. Phil. Trans. R. Soc. A, 364:1733–1767, 2006. doi:10.1098/rsta.2006.1797.
  187. R. Hock. Glacier melt: a review of processes and their modelling. Prog. Phys. Geog., 29(3):362–391, 2005.
  188. Regine Hock and Björn Holmgren. A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden. J. Glaciol., 51(172):25–36, 2005.
  189. Matthew J. Hoffman, Mauro Perego, Stephen F. Price, William H. Lipscomb, Tong Zhang, Douglas Jacobsen, Irina Tezaur, Andrew G. Salinger, Raymond Tuminaro, and Luca Bertagna. MPAS-Albany land ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids. Geoscientific Model Development, 2018. doi:10.5194/gmd-11-3747-2018.
  190. D. M. Holland, R. H. Thomas, B. de Young, M. H. Ribergaard, and B. Lyberth. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geoscience, 1:659–664, 2008. doi:10.1038/ngeo316.
  191. David M Holland and Adrian Jenkins. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. Journal of Physical Oceanography, 29(8):1787–1800, 1999.
  192. P. Holmlund, P. Jansson, and R. Pettersson. A re-analysis of the 58 year mass-balance record of Störglaciaren, Sweden. Ann. Glaciol., 42:389–394, 2005.
  193. R. Hooke. Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Rev. Geophys. Space. Phys., 19(4):664–672, 1981.
  194. R. Hooke, B. Hanson, N. Iverson, P. Jansson, and U. Fischer. Rheology of till beneath Störglaciaren, Sweden. J. Glaciol., 43(143):172–179, 1997.
  195. Ian M. Howat, Ian Joughin, and Ted A. Scambos. Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315(5818):1559–1561, 2007. doi:10.1126/science.1138478.
  196. Christina L. Hulbe and Douglas R. MacAyeal. A new numerical model of coupled inland ice sheet, ice stream, and ice shelf flow and its application to the West Antarctic Ice Sheet. J. Geophys. Res., 104(B11):25349–25366, 1999.
  197. A. Humbert, R. Greve, and K. Hutter. Parameter sensitivity studies for the ice flow of the Ross Ice Shelf, Antarctica. J. Geophys. Res., 2005. doi:10.1029/2004JF000170.
  198. W. Hundsdorfer and J. G. Verwer. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics. Springer, 2010.
  199. E. Hunke and J. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27:1849–1867, 1997.
  200. K. Hutter. Theoretical Glaciology. D. Reidel, 1983.
  201. K. Hutter. Thermomechanically coupled ice–sheet response: cold, polythermal, temperate. J. Glaciology, 39(131):65–86, 1993.
  202. K. Hutter. Mathematical foundation of ice sheet and ice shelf dynamics: A physicist's view. In I. Athanasopoulos and others, editors, Free Boundary Problems: Theory and Applications, 192–203. Chapman & Hall, 1999.
  203. P. Huybrechts. A 3–D model for the Antarctic ice sheet: a sensitivity study on the glacial–interglacial contrast. Climate Dynamics, 5:79–92, 1990.
  204. P. Huybrechts. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev., 21:203–231, 2002.
  205. P. Huybrechts and J. de Wolde. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate, 12:2169–2188, 1999.
  206. P. Huybrechts, J. Gregory, I. Janssens, and M. Wild. Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Global and Planetary Change, 42:83–105, 2004.
  207. P. Huybrechts and others. The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol., 23:1–12, 1996.
  208. Ph. Huybrechts. Report of the Third EISMINT Workshop on Model Intercomparison. 1998. URL: https://web.archive.org/web/20220120063203/http://homepages.vub.ac.be/~phuybrec/pdf/EISMINT3.Huyb.1998.pdf.
  209. Philippe Huybrechts. ISMIP-POLICE: a new intercomparison exercise to assess model uncertainties in polar ice sheet simulations under future climatic warming conditions. 2008. URL: https://web.archive.org/web/20150511084958/http://homepages.vub.ac.be/~phuybrec/police.html.
  210. J. Imbrie and eight others. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine delta-O-18 record. In Milankovitch and Climate: Understanding the Response to Astronomical Forcing, pages 269–305. D. Reidel, 1984.
  211. Erik R. Ivins and Thomas S. James. Antarctic glacial isostatic adjustment: a new assessment. Antarctic Science, 17(4):537–549, 2005.
  212. M. Jakobsson, R. Macnab, L. Mayer, R. Anderson, M. Edwards, J. Hatzky, H.W. Schenke, and P. Johnson. An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys. Res. Lett., 2008. URL: https://www.ngdc.noaa.gov/mgg/bathymetry/arctic/.
  213. Thomas S. James and Erik R. Ivins. Predictions of Antarctic crustal motions driven by present-day ice sheet evolution and by isostatic memory of the Last Glacial Maximum. J. Geophys. Res., 103:4993–5017, 1998.
  214. P. Jansson and R. Pettersson. Spatial and temporal characteristics of a long mass balance record, Störglaciaren, Sweden. Arctic, Antarctic and Alpine Research, 39(3):432–437, 2007.
  215. A. H. Jarosch. Icetools: a full Stokes finite element model for glaciers. Computers & Geosciences, 34:1005–1014, 2008. doi:10.1016/j.cageo.2007.06.012.
  216. A. H. Jarosch, C. G. Schoof, and F. S. Anslow. Restoring mass conservation to shallow ice flow models over complex terrain. The Cryosphere, 7(1):229–240, 2013. doi:10.5194/tc-7-229-2013.
  217. D. Jenssen. A three–dimensional polar ice–sheet model. J. Glaciol., 18:373–389, 1977.
  218. K. Jezek. Observing the Antarctic ice sheet using the RADARSAT-1 synthetic aperture radar. Polar Geography, 27(3):197–209, 2003.
  219. S. J. Johnsen, D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup. Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus, 47B:624–629, 1995.
  220. Claes Johnson. Numerical solution of partial differential equations by the finite element method. Cambridge University Press, 1992.
  221. J.V. Johnson and J. L. Fastook. Northern Hemisphere glaciation and its sensitivity to basal melt water. Quat. Int., 95:65–74, 2002.
  222. Eric Jones, Travis Oliphant, Pearu Peterson, and others. SciPy: open source scientific tools for Python. 2001–. URL: https://www.scipy.org/.
  223. I. Joughin. Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach. Ann. Glaciol., 34:195–201, 2002.
  224. I. Joughin, W. Abdalati, and M. Fahnestock. Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier. Nature, 432(23):608–610, 2004.
  225. I. Joughin, M. Fahnestock, S. Ekholm, and R. Kwok. Balance velocities of the Greenland ice sheet. Geophysical Research Letters, 24(23):3045–3048, 1997.
  226. I. Joughin, M. Fahnestock, R. Kwok, P. Gogineni, and C. Allen. Ice flow of Humboldt, Petermann and Ryder Gletcher, northern Greenland. J. Glaciol., 45(150):231–241, 1999.
  227. I. Joughin, M. Fahnestock, D. MacAyeal, J. L. Bamber, and P. Gogineni. Observation and analysis of ice flow in the largest Greenland ice stream. J. Geophys. Res., 106(D24):34021–34034, 2001.
  228. I. Joughin, I. M. Howat, M. Fahnestock, B. Smith, W. Krabill, R. B. Alley, H. Stern, and M. Truffer. Continued evolution of Jakobshavn Isbrae following its rapid speedup. J. Geophys. Res., 2008. doi:10.1029/2008JF001023.
  229. I. Joughin, D. R. MacAyeal, and S. Tulaczyk. Basal shear stress of the Ross ice streams from control method inversions. J. Geophys. Res., 2004. doi:10.1029/2003JB002960.
  230. I. Joughin, B. Smith, and B. Medley. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science, 344(6185):735–738, 2014.
  231. I. Joughin, B. E. Smith, I. M. Howat, T. Scambos, and T. Moon. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197):415–430, 2010.
  232. I. Joughin, S. Tulaczyk, J. Bamber, D. Blankenship, J. Holt, T. Scambos, and D. Vaughan. Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne data. J. Glaciol., 55(190):245–257, 2009.
  233. Ian Joughin, Sarah B. Das, Matt A. King, Ben E. Smith, Ian M. Howat, and Twila Moon. Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet. Science, 320(5877):781–783, 2008. URL: https://science.sciencemag.org/content/320/5877/781, doi:10.1126/science.1153288.
  234. Ian Joughin, Benjamin E Smith, and David M Holland. Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophysical Research Letters, 2010.
  235. G. Jouvet and E. Bueler. Steady, shallow ice sheets as obstacle problems: well-posedness and finite element approximation. SIAM J. Appl. Math., 72(4):1292–1314, 2012. doi:10.1137/110856654.
  236. G. Jouvet, E. Bueler, C. Gräser, and R. Kornhuber. A nonsmooth Newton multigrid method for a hybrid, shallow model of marine ice sheets. AMS Contemporary Mathematics (SCA 2012), 586:197–205, 2013. doi:10.1090/conm/586/11657.
  237. G. Jouvet and J. Rappaz. Analysis and finite element approximation of a nonlinear stationary Stokes problem arising in glaciology. Advances in Numerical Analysis, 2011:24 pages, 2011.
  238. G. Jouvet, J. Rappaz, E. Bueler, and H. Blatter. Existence and stability of steady state solutions of the shallow ice sheet equation by an energy minimization approach. J. Glaciol., 57(202):345–354, 2011.
  239. B. Kamb. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9):9083–9100, 1987.
  240. G. Karniadakis and S. Sherwin. Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, 2nd edition, 2013.
  241. R. Katz, M. Knepley, B. Smith, M. Spiegelman, and E. Coon. Numerical simulation of geodynamic processes with the Portable Extensible Toolkit for Scientific computation. Phys. Earth Planet In., 163:52–68, 2007.
  242. C. T. Kelley. Solving Nonlinear Equations with Newton's Method. Fundamentals of Algorithms. SIAM Press, 1987.
  243. C. Khroulev, W. Lipscomb, and E. Bueler. Developing a common coupling interface between ice-sheet and climate models. poster at International Glaciological Society symposium, Fairbanks, AK, 2012.
  244. David Kinderlehrer and Guido Stampacchia. An Introduction to Variational Inequalities and their Applications. Pure and Applied Mathematics. Academic Press, 1980.
  245. V. Klemann and D. Wolf. Implications of a ductile crustal layer for the deformation caused by the fennoscandian ice sheet. Geophys. J. Int., 139:216–226, 1999.
  246. D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comp. Phys., 193:357–397, 2004.
  247. L. Kondic. Instabilities in gravity driven flow of thin fluid films. SIAM Rev., 45(1):95–115 (electronic), 2003.
  248. Greg Kopp and Judith L. Lean. A new, lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters, jan 2011. doi:10.1029/2010gl045777.
  249. Uta Krebs-Kanzow, Paul Gierz, and Gerrit Lohmann. Brief communication: An ice surface melt scheme including the diurnal cycle of solar radiation. The Cryosphere, 12(12):3923–3930, dec 2018. doi:10.5194/tc-12-3923-2018.
  250. J. Krug, G. Durand, O. Gagliardini, and J. Weiss. Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics. The Cryosphere, 9(3):989–1003, may 2015. doi:10.5194/tc-9-989-2015.
  251. O. A. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Flow. Revised English edition. Gordon and Breach Science Publishers, New York, 1963.
  252. P. Langen, A. Solgaard, and C. Hvidberg. Self-inhibiting growth of the Greenland Ice Sheet. Geophys. Res. Lett., 2012. doi:10.1029/2012GL051810.
  253. E. Larour, E. Rignot, I. Joughin, and D. Aubry. Rheology of the Ronne Ice Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse control method. Geo. Res. Letters, 2005. doi:10.1029/2004GL021693.
  254. E. Larour, H. Seroussi, M. Morlighem, and E. Rignot. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res., 2012. doi:10.1029/2011JF002140.
  255. Christopher F. Larsen, Roman J. Motyka, Jeffrey T. Freymuller, Keith A. Echelmeyer, and Erik R. Ivins. Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth Planet. Sci. Lett., 237:548–560, 2005.
  256. R.L. Layberry and J.L. Bamber. A new ice thickness and bed data set for the Greenland ice sheet 2: Relationship between dynamics and basal topography. J. Geophys. Res., 106 (D24):33,781–33,788, 2001.
  257. A. Le Brocq, A. Payne, M. Siegert, and R. Alley. A subglacial water-flow model for West Antarctica. J. Glaciol., 55(193):879–888, 2009. doi:10.3189/002214309790152564.
  258. A. M. Le Brocq, A. J. Payne, and A. Vieli. An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth System Science Data, 2(2):247–260, 2010. doi:10.5194/essd-2-247-2010.
  259. G. R. Leguy, X. S. Asay-Davis, and W. H. Lipscomb. Parameterization of basal friction near grounding lines in a one-dimensional ice sheet model. The Cryosphere, 8:1239–1259, 2014. doi:10.5194/tc-8-1239-2014.
  260. Jean Lemaitre. Phenomenological aspects of damage. In A course on damage mechanics, pages 1–37. Springer, 1996.
  261. Jean-Fran\,cois Lemieux, Stephen F. Price, Katherine J. Evans, Dana Knoll, Andrew G. Salinger, David M. Holland, and Antony J. Payne. Implementation of the jacobian-free newton-krylov method for solving the first-order ice sheet momentum balance. J. Computational Physics, 230(17):6531 – 6545, 2011. doi:10.1016/j.jcp.2011.04.037.
  262. W. Leng, L. Ju, M. Gunzburger, S. Price, and T. Ringler. A parallel high-order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments. J. Geophys. Res., 2012. doi:10.1029/2011JF001962.
  263. A. Letrèguilly, P. Huybrechts, and N. Reeh. Steady-state characteristics of the Greenland ice sheet under different climates. J. Glaciol., 37(125):149–157, 1991.
  264. R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2002.
  265. A. Levermann. When glacial giants roll over. Nature, 472:43–44, 2011.
  266. A. Levermann, T. Albrecht, R. Winkelmann, M. A. Martin, M. Haseloff, and I. Joughin. Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. The Cryosphere, 6:273–286, 2012. doi:10.5194/tc-6-273-2012.
  267. E. L. Lewis and R. G. Perkin. Ice pumps and their rates. Journal of Geophysical Research: Oceans, 91(C10):11756–11762, 1986. doi:10.1029/JC091iC10p11756.
  268. C. S. Lingle and T. J. Brown. A subglacial aquifer bed model and water pressure-dependent basal sliding relationship for a West Antarctic ice stream. In C. J. Van der Veen and J. Oerlemans, editors, Dynamics of the West Antarctic Ice Sheet. D. Reidel, 1987.
  269. C. S. Lingle and J. A. Clark. A numerical model of interactions between a marine ice sheet and the solid earth: Application to a West Antarctic ice stream. J. Geophys. Res., 90(C1):1100–1114, 1985.
  270. C. S. Lingle and E. N. Troshina. Relative magnitudes of shear and longitudinal strain rates in the inland Antarctic ice sheet, and response to increasing accumulation. Ann. Glaciol., 27:187–193, 1998.
  271. K. N. Liou. Introduction to Atmospheric Radiation. Elsevier Science & Technology Books, 2002. ISBN 9780080491677.
  272. V. Lipenkov, N. I. Barkov, P. Duval, and P. Pimienta. Crystalline texture of the 2083 m ice core at Vostok Station, Antarctica. J. Glaciol., 35(1):392–398, 1989.
  273. William H. Lipscomb, Stephen F. Price, Matthew J. Hoffman, Gunter R. Leguy, Andrew R. Bennett, Sarah L. Bradley, Katherine J. Evans, Jeremy G. Fyke, Joseph H. Kennedy, Mauro Perego, and others. Description and evaluation of the Community Ice Sheet Model (CISM) v2.1. Geoscientific Model Development, 2019. doi:10.5194/gmd-12-387-2019.
  274. S. J. Livingstone, C. D. Clark, J. Woodward, and J. Kingslake. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. The Cryosphere, 7(6):1721–1740, 2013. doi:10.5194/tc-7-1721-2013.
  275. L. A. Lliboutry and P. Duval. Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. Annales Geophys., 3:207–224, 1985.
  276. S. B. Luthcke, H. J. Zwally, W. Abdalati, D. D. Rowlands, R. D. Ray, R. S. Nerem, F. G. Lemoine, J. J. McCarthy, and D. S. Chinn. Recent greenland ice mass loss by drainage system from satellite gravity observations. Science, 314(5803):1286–1289, 2006. doi:10.1126/science.1130776.
  277. M. B. Lythe and D. G. Vaughan. BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res., 106(B6):11335–11351, 2001.
  278. M. Lüthi, M. Fahnestock, and M. Truffer. Correspondence: calving icebergs indicate a thick layer of temperate ice at the base of Jakobshavn Isbrae, Greenland. J. Glaciol., 55(191):563\,–\,566, 2009.
  279. M. Lüthi, M. Funk, A. Iken, S. Gogineni, and M. Truffer. Mechanisms of fast flow in Jakobshavns Isbræ, Greenland; Part III: measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock. J. Glaciol., 48(162):369\,–\,385, 2002.
  280. D. R. MacAyeal. Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica. J. Geophys. Res., 94(B4):4071–4087, 1989.
  281. D. R. MacAyeal. A tutorial on the use of control methods in ice-sheet modeling. J. Glaciol., 39(131):91–98, 1993.
  282. D. R. MacAyeal and V. Barcilon. Ice-shelf response to ice-stream discharge fluctuations: I. Unconfined ice tongues. J. Glaciol., 34(116):121–127, 1988.
  283. D. R. MacAyeal, V. Rommelaere, Ph. Huybrechts, C.L. Hulbe, J. Determann, and C. Ritz. An ice-shelf model test based on the Ross ice shelf. Ann. Glaciol., 23:46–51, 1996.
  284. D.R. MacAyeal. EISMINT: Lessons in Ice-Sheet Modeling. Department of Geophysical Sciences, University of Chicago, 428 pages, 1997. URL: https://web.archive.org/web/20220120063203/http://homepages.vub.ac.be/~phuybrec/pdf/MacAyeal.lessons.pdf.
  285. M. W. Mahaffy. A three–dimensional numerical model of ice sheets: tests on the Barnes Ice Cap, Northwest Territories. J. Geophys. Res., 81(6):1059–1066, 1976.
  286. S. J. Marshall and G. K. C. Clarke. A continuum mixture model of ice stream thermomechanics in the Laurentide Ice Sheet: 1. Theory. J. Geophys. Res., 102(B9):20599–20613, 1997.
  287. S. J. Marshall and G. K. C. Clarke. A continuum mixture model of ice stream thermomechanics in the Laurentide Ice Sheet: 2. Application to the Hudson Strait Ice Stream. J. Geophys. Res., 102(B9):20615–20637, 1997.
  288. S. J. Marshall, T. S. James, and G. K. C. Clarke. North American Ice Sheet reconstructions at the Last Glacial Maximum. Quaternary Sci. Rev., 21:175–192, 2002.
  289. C. Martín, R. Hindmarsh, and F. Navarro. On the effects of divide migration, along-ridge flow, and basal sliding on isochrones near an ice divide. J. Geophys. Res. (Earth Surface), 2009. doi:10.1029/2008JF001025.
  290. M. A. Martin, R. Winkelmann, M. Haseloff, T. Albrecht, E. Bueler, C. Khroulev, and A. Levermann. The Potsdam Parallel Ice Sheet Model (PISM-PIK) –Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet. The Cryosphere, 5:727–740, 2011.
  291. C. Fox Maule, M. E. Purucker, N. Olsen, and K. Mosegaard. Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science, 309:464–467, 2005.
  292. D. Maxwell, M. Truffer, S. Avdonin, and M. Stuefer. An iterative scheme for determining glacier velocities and stresses. J. Glaciol., 54(188):888–898, 2008.
  293. David Maxwell. \tt siple, a small inverse problems library. 2011. URL: https://github.com/damaxwell/siple.
  294. M. Mengel and A. Levermann. Ice plug prevents irreversible discharge from east antarctica. Nature Clim. Change, 4:451–455, 2014. doi:10.1038/nclimate2226.
  295. Rémy Mercenier, Martin P. Lüthi, and Andreas Vieli. Calving relation for tidewater glaciers based on detailed stress field analysis. The Cryosphere, 12(2):721–739, feb 2018. doi:10.5194/tc-12-721-2018.
  296. Michael Metcalf and John Reid. FORTRAN 90/95 Explained. Oxford University Press, second edition, 1999.
  297. E. Le Meur and P. Huybrechts. A comparison of different ways of dealing with isostasy: examples from modeling the Antarctic ice sheet during the last glacial cycle. Annals of Glaciology, 23:309–317, 1996.
  298. Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49 (electronic), 2003.
  299. T. Moon, I. Joughin, B. Smith, and I. Howat. 21st-Century evolution of Greenland outlet glacier velocities. Science, 336:576–578, 2012. doi:10.1126/science.1219985.
  300. P. Moore and M. A. King. Antarctic ice mass balance estimates from GRACE: Tidal aliasing effects. J. Geophys. Res., 2008. doi:10.1029/2007JF000871.
  301. L. W. Morland. Unconfined ice-shelf flow. In C. J. van der Veen and J. Oerlemans, editors, Dynamics of the West Antarctic ice sheet, 99–116. Kluwer Academic Publishers, 1987.
  302. L. W. Morland. Radially symmetric ice sheet flow. Phil. Trans. R. Soc. Lond. A, 355:1873–1904, 1997.
  303. L. W. Morland and I. R. Johnson. Steady motion of ice sheets. J. Glaciol., 25(92):229–246, 1980.
  304. L. W. Morland and R. Zainuddin. Plane and radial ice-shelf flow with prescribed temperature profile. In C. J. van der Veen and J. Oerlemans, editors, Dynamics of the West Antarctic ice sheet, 117–140. Kluwer Academic Publishers, 1987.
  305. M. Morlighem, J. Bondzio, H. Seroussi, E. Rignot, E. Larour, A. Humbert, and S. Rebuffi. Modeling of Store Gletscher's calving dynamics, West Greenland, in response to ocean thermal forcing. Geophysical Research Letters, pages n/a–n/a, 2016. URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL067695, doi:10.1002/2016GL067695.
  306. M. Morlighem, E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry. Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett., 2010. doi:10.1029/2010GL043853.
  307. K. W. Morton and D. F. Mayers. Numerical Solutions of Partial Differential Equations: An Introduction. Cambridge University Press, 2nd edition, 2005.
  308. Todd Munson, Jason Sarich, Stefan Wild, Steven Benson, and Lois Curfman McInnes. Tao 2.0 users manual. Technical Report ANL/MCS-TM-322, Mathematics and Computer Science Division, Argonne National Laboratory, 2012. URL: https://www.mcs.anl.gov/research/projects/tao/.
  309. J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 1999.
  310. S. Nowicki and 30 others. Insights into spatial sensitivities of ice mass response to environmental change from the searise ice sheet modeling project: i. antarctica. J. Geophys. Res.: Earth Surface, 118(2):1002–1024, 2013. doi:10.1002/jgrf.20081.
  311. S. Nowicki and 30 others. Insights into spatial sensitivities of ice mass response to environmental change from the searise ice sheet modeling project: ii. greenland. J. Geophys. Res.: Earth Surface, 118(2):1025–1044, 2013. doi:10.1002/jgrf.20076.
  312. J. F. Nye. A method of calculating the thicknesses of the ice-sheets. Nature, 169(4300):529–530, 1952.
  313. J. F. Nye. The mechanics of glacier flow. J. Glaciol., 2(2):82–93, 1952.
  314. J. F. Nye. The distribution of stress and velocity in glaciers and ice-sheets. Proc. Royal Soc. London A, 239:113–133, 1957.
  315. J. F. Nye. Water flow in glaciers: Jökulhlaups, tunnels and veins. J. Glaciol., 17(76):181–207, 1976.
  316. J. F. Nye. A flow model for the polar caps of Mars. J. Glaciol., 46(154):438–444, 2000.
  317. J. F. Nye, W. B. Durham, P. M. Schenk, and J. M. Moore. The instability of a South Polar Cap on Mars composed of carbon dioxide. Icarus, 144:449–455, 2000. doi:10.1006/icar.1999.6306.
  318. J. Ockendon, S. Howison, A. Lacey, and S. Movchan. Applied Partial Differential Equations. Oxford University Press, revised edition, 2003.
  319. H. Oerlemans and C. J. van der Veen. Ice Sheets and Climate. D. Reidel, 1984.
  320. J. Oerlemans and ten others. Modelling the response of glaciers to climate warming. Climate Dynamics, 14:267–274, 1998.
  321. J. H. Oerlemans. Minimal Glacier Models. Igitur, Utrecht Publishing & Archiving Services, Utrecht, 2008.
  322. A. Ohmura. New temperature distribution maps for Greenland. Z. Gletscherkd. Glazialgeol., 23(1):1–45, 1987.
  323. A. Ohmura and N. Reeh. New precipitation and accumulation maps for Greenland. J. Glaciol., 37(125):140–148, 1991.
  324. Dirk Olbers and Hartmut Hellmer. A box model of circulation and melting in ice shelf caverns. Ocean Dynamics, 60(1):141–153, 2010.
  325. N. Oreskes, K. Shrader-Frechette, and K. Belitz. Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263(5147):641–646, 1994.
  326. E. Orowan. Discussion. J. Glaciol., 1(5):231–236, 1949.
  327. M. C. Pèlissier and L. Reynaud. Étude d'un modèle d'écoulement de glacier. C. R. Acad. Sci. Paris, 279(13):531–534, 1974.
  328. C. Paige and M. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8(1):43–71, 1982.
  329. R. Parker. Geophysical Inverse Theory. Princeton University Press, 1994.
  330. F. Parrenin, R. Hindmarsh, and F. Remy. Analytical solutions for the effect of topography, accumulation rate and lateral flow divergence on isochrone layer geometry. J. Glaciol., 52(177):191–202, 2006.
  331. F. Parrenin, F. Remy, C. Ritz, M. J. Siegert, and J. Jouzel. New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core. J. Geophys. Res., 109:D20102, 2004. doi:10.1029/2004JD004561.
  332. W. S. B. Paterson. The Physics of Glaciers. Pergamon, 3rd edition, 1994.
  333. W. S. B. Paterson and W. F. Budd. Flow parameters for ice sheet modeling. Cold Reg. Sci. Technol., 6(2):175–177, 1982.
  334. F. Pattyn, L. Perichon, G. Durand, and 25 others. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. J. Glaciol., 59(215):410–422, 2013.
  335. F. Pattyn, C. Schoof, L. Perichon, and 15 others. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. The Cryosphere, 6:573–588, 2012. doi:10.5194/tc-6-573-2012.
  336. F. Pattyn, B. De Smedt, and R. Souchez. Influence of subglacial Lake Vostok on the regional ice dynamics of the Antarctic ice sheet: a model study. J. Glaciol., 50(171):583–589, 2004.
  337. F. Pattyn and twenty others. Benchmark experiments for higher-order and full Stokes ice sheet models (ISMIP-HOM). The Cryosphere, 2:95–108, 2008.
  338. Frank Pattyn. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res., 2003. doi:10.1029/2002JB002329.
  339. Frank Pattyn, Sand De Brabander, and Ann Huyghe. Basal and thermal control mechanisms of the Ragnhild glaciers, East Antarctica. Ann. Glaciol., 40:225–231, 2005.
  340. Frank Pattyn and Tony Payne. ISMIP-HOM Ice Sheet Model Intercomparison Project: benchmark experiments for Higher-Order ice sheet Models. 2008. URL: https://frank.pattyn.web.ulb.be/ismip/welcome.html.
  341. A. Payne. EISMINT: Ice sheet model intercomparison exercise phase two. Proposed simplified geometry experiments. 1997. URL: https://web.archive.org/web/20220119191557/http://homepages.vub.ac.be/~phuybrec/eismint/thermo-descr.pdf.
  342. A. Payne and others. Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J. Glaciol., 153:227–238, 2000.
  343. A. J. Payne and D. J. Baldwin. Analysis of ice–flow instabilities identified in the EISMINT intercomparison exercise. Ann. Glaciol., 30:204–210, 2000.
  344. A. J. Payne and P. W. Dongelmans. Self–organization in the thermomechanical flow of ice sheets. J. Geophys. Res., 102(B6):12219–12233, 1997.
  345. S. S. Pegler, K. Kowal, L. Hasenclever, and M. G. Worster. Lateral controls on grounding-line dynamics. J. Fluid Mech., 722:R1, 2013.
  346. S. S. Pegler, J. R. Lister, and M. G. Worster. Release of a viscous power-law fluid over an inviscid ocean. J. Fluid Mech., 700:63–76, 2012. doi:10.1017/jfm.2012.91.
  347. S. S. Pegler and M. G. Worster. Dynamics of a viscous layer flowing radially over an inviscid ocean. J. Fluid Mech., 696:152–174, 2012. doi:10.1017/jfm.2012.21.
  348. W. R. Peltier. The impulse response of a Maxwell earth. Rev. Geophys. Space Phys., 12:649–669, 1974.
  349. W. R. Peltier. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics. Rev. Geophys., 36(4):603–689, 1998.
  350. W. R. Peltier, D. L. Goldsby, D. L. Kohlstedt, and L. Tarasov. Ice–age ice–sheet rheology: constraints from the last Glacial Maximum form of the Laurentide ice sheet. Ann. Glaciol., 30:163–176, 2000.
  351. Mauro Perego, Max Gunzburger, and John Burkardt. Parallel finite-element implementation for higher-order ice-sheet models. Journal of Glaciology, 58(207):76–88, 2012. doi:10.3189/2012JoG11J063.
  352. R. Peyret. Spectral Methods for Incompressible Viscous Flow. Volume 148 of Applied Mathematical Sciences. Springer, 2002.
  353. W. T. Pfeffer, J. T. Harper, and S. O'Neel. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321:1340–1343, 2008.
  354. T. Phillips, H. Rajaram, and K. Steffen. Cryo-hydrologic warming: A potential mechanism for rapid thermal response of ice sheets. Geophy. Res. Lett., 37(20):1–5, 2010. doi:10.1029/2010GL044397.
  355. Marco Picasso, Jacques Rappaz, Adrian Reist, Martin Funk, and Heinz Blatter. Numerical simulation of the motion of a two-dimensional glacier. Internat. J. Numer. Methods Engrg., 60(5):995–1009, 2004.
  356. D. W. Pierce. Beyond the Means: Validating Climate Models with Higher-Order Statistics. Computing in Science and Engineering, 6(5):22–29, 2004.
  357. S. Pimentel and G. Flowers. A numerical study of hydrologically driven glacier dynamics and subglacial flooding. Proc. R. Soc. A, 467:537–558, 2011. doi:10.1098/rspa.2010.0211.
  358. S. Pimentel, G. Flowers, and C. Schoof. A hydrologically coupled higher-order flow-band model of ice dynamics with a Coulomb friction sliding law. J. Geophys. Res., 2010. doi:10.1029/2009JF001621.
  359. H. N. Pollack, S. J. Hurter, and J. R. Johnson. Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys., 31(3):267–280, 1993.
  360. D Pollard and RM DeConto. A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to antarctica. The Cryosphere, 6(5):953, 2012.
  361. D. Pollard and R. M. DeConto. A coupled ice-sheet/ice-shelf/sediment model applied to a marine-margin flowline: Forced and unforced variations. In M. J. Hambrey and others, editors, Glacial Sedimentary Processes and Products. Blackwell Publishing Ltd., 2007.
  362. David Pollard and Robert M. DeConto. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458:329–333, 2009. doi:10.1038/nature07809.
  363. A. Post and E. R. LaChapelle. Glacier Ice. University of Washington Press and International Glaciological Society, revised edition, 2000.
  364. A. Pralong and M. Funk. Dynamic damage model of crevasse opening and application to glacier calving. J. Geophys. Res., 2005. doi:10.1029/2004JB003104.
  365. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 2nd edition, 1992.
  366. S. Price, A. Payne, I. Howat, and B. Smith. Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Nat. Acad. Sci., 108(22):8978–8983, 2011. doi:10.1073/pnas.1017313108.
  367. H. D. Pritchard, S.B. Luthcke, and A.H. Fleming. Understanding ice-sheet mass balance: progress in satellite altimetry and gravimetry. J. Glaciol., 56(200):1151–1161, 2010.
  368. S. Rahmstorf and others. Recent climate observations compared to projections. Science, 316(5825):709, 2007. doi:10.1126/science.1136843.
  369. Jacques Rappaz and Adrian Reist. Mathematical and numerical analysis of a three-dimensional fluid flow model in glaciology. Math. Models Methods Appl. Sci. (M3AS), 15(1):37–52, 2005.
  370. P. A. Raviart. Sur la résolution de certaines equations paraboliques non linéaires. J. Functional Anal., 5:299–328, 1970.
  371. C. F. Raymond. Determination of the three-dimensional velocity field in a glacier. J. Glaciol., 10(58):39–53, 1971.
  372. C. F. Raymond. Energy balance of ice streams. J. Glaciol., 46(155):665–647, 2000.
  373. Michael Reed and Barry Simon. Methods of Modern Mathematical Physics I. Academic Press, 2nd edition, 1980.
  374. Niels Reeh, Erik Lintz Christensen, Christoph Mayer, and Ole B. Olesen. Tidal bending of glaciers: a linear viscoelastic approach. Ann. Glaciol., 37(1):83–89, 2003.
  375. Ronja Reese, Torsten Albrecht, Matthias Mengel, Xylar Asay-Davis, and Ricarda Winkelmann. Antarctic sub-shelf melt rates via pico. The Cryosphere, 12(6):1969–1985, 2018. doi:10.5194/tc-12-1969-2018.
  376. L. Reynaud. Flow of a valley glacier with a solid friction law. J. Glaciol., 12(65):251–258, 1973.
  377. E. Rignot and P. Kanagaratnam. Changes in the velocity structure of the Greenland Ice Sheet. Science, 311:986–990, 2008. doi:10.1126/science.1121381.
  378. E. Rignot, J. Mouginot, and B. Scheuchl. Ice flow of the Antarctic Ice Sheet. Science, 333(6048):1427–1430, 2011. doi:10.1126/science.1208336.
  379. E. Rignot, Y. Xu, D. Menemenlis, J. Mouginot, B. Scheuchl, X. Li, M. Morlighem, H. Seroussi, M. van den Broeke, I. Fenty, C. Cai, L. An, and B. de Fleurian. Modeling of ocean-induced ice melt rates of five west greenland glaciers over the past two decades. Geophysical Research Letters, 43(12):6374–6382, 2016. doi:10.1002/2016GL068784.
  380. C. Ritz. EISMINT Intercomparison Experiment: Comparison of existing Greenland models. 1997. URL: https://web.archive.org/web/20220120054655/http://homepages.vub.ac.be/~phuybrec/eismint/greenland.html.
  381. C. Ritz, A. Fabre, and A. Letréguilly. Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the evolution through the last glacial cycle. Climate Dyn., 13(1):11–24, 1997.
  382. Catherine Ritz, Vincent Rommelaere, and Christophe Dumas. Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region. J. Geophys. Res., 106(D23):31943–31964, 2001.
  383. P. J. Roache. Building PDE codes to be Verifiable and Validatable. Computing in Science and Engineering, 6(5):30–38, 2004.
  384. P. J. Roache, K. Ghia, and F. White. Editorial policy statement on the control of numerical accuracy. ASME Journal of Fluids Engineering, 108(1):2, 1986.
  385. P.J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque, New Mexico, 1998.
  386. A. Robel, C. Schoof, and E. Tziperman. Rapid grounding line migration induced by internal ice stream variability. Journal of Geophysical Research: Earth Surface, 119(11):2430–2447, 2014.
  387. J. F. Rodrigues and J. M. Urbano. On the mathematical analysis of a valley glacier model. In Free Boundary Problems: Theory and Applications, volume 409 of CRC Res. Notes Math., 237–245. Chapman & Hall, 1999.
  388. J.F. Rodrigues. Obstacle Problems in Mathematical Physics. Volume 134 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1987.
  389. I. Rogozhina and D. Rau. Vital role of daily temperature variability in surface mass balance parameterizations of the greenland ice sheet. The Cryosphere, 8:575–585, 2014. doi:10.5194/tc-8-575-2014.
  390. V. Rommelaere and D. R. MacAyeal. Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method. Ann. Glaciol., 24:43–48, 1997.
  391. Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM Press, second edition, 2003.
  392. F. Saito and A. Abe-Ouchi. Sensitivity of Greenland ice sheet simulation to the numerical procedure employed for ice-sheet dynamics. Ann. Glaciol., 42(1):331–336, 2005.
  393. F. Saito, A. Abe-Ouchi, and H. Blatter. European Ice Sheet Modelling Initiative (EISMINT) model intercomparison experiments with first-order mechanics. J. Geophys. Res., 2006. doi:10.1029/2004JF000273.
  394. F. Saito, A. Abe-Ouchi, and H. Blatter. An improved numerical scheme to compute horizontal gradients at the ice-sheet margin: its effect on the simulated ice thickness and temperature. Ann. Glaciol., 46:87–96, 2007.
  395. Andrew G Salinger, Nawaf M Bou-rabee, Elizabeth A Burroughs, Roger P Pawlowski, Richard B Lehoucq, Louis Romero, and Edward D Wilkes. LOCA 1.0 library of continuation algorithms: theory and implementation manual. Technical Report, Office of Scientific and Technical Information (OSTI), mar 2002. doi:10.2172/800778.
  396. A. Sargent and J. L. Fastook. Manufactured analytical solutions for isothermal full-stokes ice sheet models. The Cryosphere, 4(3):285–311, 2010. doi:10.5194/tc-4-285-2010.
  397. J. C. Savage and W. S. B. Paterson. Borehole measurements in the Athabasca Glacier. J. Geophys. Res., 68:4521–4536, 1963.
  398. R. Sayag, S. S. Pegler, and M. G. Worster. Floating extensional flows. Physics of Fluids, 2012. doi:10.1063/1.4747184.
  399. R. Sayag and M. G. Worster. Axisymmetric gravity currents of power-law fluids over a rigid horizontal surface. J. Fluid Mech., 2013. doi:10.1017/jfm.2012.545.
  400. T. Scambos, O. Sergienko, A. Sargent, D. MacAyeal, and J. Fastook. ICESat profiles of tabular iceberg margins and iceberg breakup at low latitudes. Geophys. Res. Let., 2005. doi:10.1029/2005GL023802.
  401. H. M. Schey. div, grad, curl, and all that: an informal text on vector calculus. W. W. Norton, 4th edition, 2005.
  402. C. Schoof. Basal perturbations under ice streas: form drag and surface expression. J. Glaciol., 48(162):407–416, 2002.
  403. C. Schoof. The effect of basal topography on ice sheet dynamics. Continuum Mech. Thermodyn., 15:295–307, 2003. doi:10.1007/s00161-003-0119-3.
  404. C. Schoof. On the mechanics of ice-stream shear margins. J. Glaciol., 50(169):208–218, 2004.
  405. C. Schoof. The effect of cavitation on glacier sliding. Proc. R. Soc. A, 461:609–627, 2005. doi:10.1098/rspa.2004.1350.
  406. C. Schoof. A variational approach to ice stream flow. J. Fluid Mech., 556:227–251, 2006.
  407. C. Schoof. Variational methods for glacier flow over plastic till. J. Fluid Mech., 555:299–320, 2006.
  408. C. Schoof. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res., 2007. F03S28. doi:10.1029/2006JF000664.
  409. C. Schoof. Marine ice-sheet dynamics. Part 1. The case of rapid sliding. J. Fluid Mech., 573:27–55, 2007.
  410. C. Schoof. Coulomb friction and other sliding laws in a higher order glacier flow model. Math. Models Methods Appl. Sci. (M3AS), 20:157–189, 2010. doi:10.1142/S0218202510004180.
  411. C. Schoof. Ice sheet acceleration driven by melt supply variability. Nature, 468(7325):803–806, 2010.
  412. C. Schoof. Marine ice sheet dynamics. Part 2: A Stokes Flow contact problem. J. Fluid Mech., 679:122–255, 2011.
  413. C. Schoof and I. J. Hewitt. Ice-sheet dynamics. Annu. Rev. Fluid Mech., 45:217–239, 2013.
  414. C. Schoof, I. J. Hewitt, and M. A. Werder. Flotation and free surface flow in a model for subglacial drainage. Part I: Distributed drainage. J. Fluid Mech., 702:126–156, 2012.
  415. C. Schoof and R. Hindmarsh. Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Quart. J. Mech. Appl. Math., 63(1):73–114, 2010. doi:10.1093/qjmam/hbp025.
  416. Christian Schoof. Cavitation on deformable glacier beds. SIAM J. Appl. Math., 67(6):1633–1653, 2007.
  417. Christian Schoof, Richard Hindmarsh, and Frank Pattyn. Marine Ice Sheet Model Intercomparison Project. 2008. URL: https://frank.pattyn.web.ulb.be/mismip/welcome.html.
  418. J. Seguinot. Spatial and seasonal effects of temperature variability in a positive degree day surface melt model. J. Glaciol., 59(218):1202–1204, 2013. doi:10.3189/2013JoG13J081.
  419. J. Seguinot and I. Rogozhina. Daily temperature variability predetermined by thermal conditions over ice sheet surfaces. J. Glaciol., 2014. doi:10.3189/2014JoG14J036.
  420. H. Seroussi, M. Morlighem, E. Larour, E. Rignot, and A. Khazendar. Hydrostatic grounding line parameterization in ice sheet models. The Cryosphere, 8(6):2075–2087, 2014. doi:10.5194/tc-8-2075-2014.
  421. N. M. Shapiro and M. H. Ritzwoller. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett., 223:213–224, 2004. URL: http://ciei.colorado.edu/~nshapiro/MODEL/ASC_VERSION/hfmap.asc.gz.
  422. Andrew Shepard and Duncan Wingham. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science, 315:1529–1532, 2007. doi:10.1126/science.1136776.
  423. J. R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In M. Lin and D. Manocha, editors, Applied Computational Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer Science, pages 203–222. Springer-Verlag, 1996.
  424. R. Shreve. Movement of water in glaciers. J. Glaciol, 11(62):205–214, 1972.
  425. M. Siegert, A. Le Brocq, and A. Payne. Hydrological connections between Antarctic subglacial lakes, the flow of water beneath the East Antarctic Ice Sheet and implications for sedimentary processes, pages 3–10. Wiley-Blackwell, Malden, MA, USA, 2007.
  426. John W. Slater. Tutorial on CFD Verification and Validation. Web site tutorial, NPARC Alliance, 2001. Much of the material follows AIAA G-077-1998, “Guide for the Verification and Validation of Computational Fluid Dynamics Simulations.”. URL: https://www.grc.nasa.gov/WWW/wind/valid/tutorial/tutorial.html.
  427. B. Smith, P. Bjorstad, and W. Gropp. Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, 1996.
  428. G. Smith and L. Morland. Viscous relations for the steady creep of polycrytalline ice. Cold. Reg. Sci. Tech., 5:141–150, 1981.
  429. Ronald B Smith and Idar Barstad. A linear theory of orographic precipitation. Journal of the Atmospheric Sciences, 61(12):1377–1391, 2004.
  430. Ronald B Smith, Idar Barstad, and Laurent Bonneau. Orographic precipitation and oregon’s climate transition. Journal of the Atmospheric Sciences, 62(1):177–191, 2005.
  431. Piotr K. Smolarkiewicz. Comment on "A Positive Definite Advection Scheme Obtained by Nonlinear Renormalization of the Advective Fluxes". Monthly Weather Review, 117(11):2626 – 2632, 1989. URL: https://journals.ametsoc.org/view/journals/mwre/117/11/1520-0493_1989_117_2626_copdas_2_0_co_2.xml, doi:10.1175/1520-0493(1989)117<2626:COPDAS>2.0.CO;2.
  432. Ian N. Sneddon. Fourier Transforms. McGraw-Hill Book Company, New York, 1951.
  433. A. Solgaard and P. Langen. Multistability of the greenland ice sheet and the effects of an adaptive mass balance formulation. Climate Dynamics, 2012. doi:10.1007/s00382-012-1305-4.
  434. A.M. Solgaard, N. Reeh, P. Japsen, and T. Nielsen. Snapshots of the greenland ice sheet configuration in the pliocene to early pleistocene. Journal of Glaciology, 57(205):871–880, 2011. doi:10.3189/002214311798043816.
  435. L. S. Sorensen, S. B. Simonsen, and 6 others. Mass balance of the greenland ice sheet (2003-2008) from icesat data - the impact of interpolation, sampling and firn density. The Cryosphere, 5(1):173–186, 2011. doi:10.5194/tc-5-173-2011.
  436. John C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Wadsworth, Pacific Grove, California, 1989.
  437. Albert Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM Press, 2004.
  438. L. Tarasov, A. S. Dyke, R. M. Neal, and W. R. Peltier. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett., 2011. in press.
  439. L. Tarasov and W. R. Peltier. Greenland glacial history and local geodynamic consequences. Geophys. J. Int., 150:198–229, 2002.
  440. L. Tarasov and W. R. Peltier. A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quaternary Science Reviews, 23:359–388, 2004.
  441. Irina K. Tezaur, Mauro Perego, Andrew G. Salinger, Raymond S. Tuminaro, and Stephen F. Price. Albany/FELIX: a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis. Geoscientific Model Development, 2015. doi:10.5194/gmd-8-1197-2015.
  442. Irina K. Tezaur, Raymond S. Tuminaro, Mauro Perego, Andrew G. Salinger, and Stephen F. Price. On the scalability of the albany/FELIX first-order stokes approximation ice sheet solver for large-scale simulations of the Greenland and antarctic ice sheets. Procedia Computer Science, 51:2026–2035, 2015. doi:10.1016/j.procs.2015.05.467.
  443. T. Thorsteinsson. An analytical approach to deformation of anisotropic ice-crystal aggregates. J. Glaciol., 47(158):507–516, 2001.
  444. Jonathan H. Tomkin. Coupling glacial erosion and tectonics at active orogens: a numerical modeling study. Journal of Geophysical Research: Earth Surface, 112(F2):, 2007. URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005JF000332, doi:10.1029/2005JF000332.
  445. L. N. Trefethen. Spectral Methods in MATLAB. SIAM Press, 2000.
  446. L. N. Trefethen. Approximation Theory and Approximation Practice. SIAM Press, 2013.
  447. L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM Press, 1997.
  448. M. Truffer and K. Echelmeyer. Of isbrae and ice streams. Ann. Glaciol., 36(1):66–72, 2003.
  449. M. Truffer, K. Echelmeyer, and W. Harrison. Glacier motion dominated by processes deep in underlying till. J. Glaciol., 46(153):213–221, 2000.
  450. M. Truffer, K. Echelmeyer, and W. Harrison. Implications of till deformation on glacier dynamics. J. Glaciol., 47(156):123–134, 2001. doi:10.3189/172756501781832449.
  451. M. Truffer and M. Fahnestock. Rethinking ice sheet time scales. Science, 315(5818):1508–1510, 2007. doi:10.1126/science.1140469.
  452. M. Truffer and W. Harrison. In situ measurements of till deformation and water pressure. J. Glaciol., 52(177):175–182, 2006.
  453. S. Tulaczyk, W. B. Kamb, and H. F. Engelhardt. Basal mechanics of Ice Stream B, West Antarctica 1. Till mechanics. J. Geophys. Res., 105(B1):463–481, 2000. doi:10.1029/1999jb900329.
  454. S. Tulaczyk, W. B. Kamb, and H. F. Engelhardt. Basal mechanics of Ice Stream B, West Antarctica 2. Undrained plastic bed model. J. Geophys. Res., 105(B1):483–494, 2000.
  455. R. Tuminaro, Mauro Perego, I. Tezaur, A. Salinger, and Stephen Price. A matrix dependent/algebraic multigrid approach for extruded meshes with applications to ice sheet modeling. SIAM Journal on Scientific Computing, 38(5):C504–C532, 2016. doi:10.1137/15M1040839.
  456. C. Vázquez, E. Schiavi, J. Durany, J. I. Díaz, and N. Calvo. On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics. SIAM J. Appl. Math., 63(2):683–707, 2003. doi:10.1137/S0036139901385345.
  457. R. S. W. van de Wal, W. Boot, M. R. van den Broeke, C. J. P. P. Smeets, C. H. Reijmer, J. J. A. Donker, and J. Oerlemans. Large and rapid melt-induced velocity changes in the ablation zone of the Greenland ice sheet. Science, 321(5885):111–113, 2008. doi:10.1126/science.1158540.
  458. M. R. van den Broeke, J. L. Bamber, J. Ettema, E. Rignot, E. Schrama, W. J. van de Berg, E. van Meijgaard, I. Velicogna, and B. Wouters. Partitioning recent Greenland mass loss. Science, 326(5955):984–986, 2009. doi:10.1126/science.1178176.
  459. C. J. van der Veen. A note on the equilibrium profile of a free floating ice shelf. IMAU Report V83-15. State University Utrecht, Utrecht, 1983.
  460. C. J. van der Veen. Response of a marine ice sheet to changes at the grounding line. Quat. Res., 24:257–267, 1985.
  461. C. J. van der Veen. Evaluating the performance of cryospheric models. Polar Geography, 23(2):83–96, 1999.
  462. C. J. van der Veen. Fundamentals of Glacier Dynamics. CRC Press, 2nd edition, 2013.
  463. C. J. van der Veen, D. H. Bromwich, B. Csatho, and C. Kim. Trend analysis of Greenland precipitation. J. Geophys. Res., 106(D24):33909–33918, 2001.
  464. C. J. van der Veen and A. J. Payne. Modelling land-ice dynamics. In J. L. Bamber and A. J. Payne, editors, Mass Balance of the Cryosphere: Observations and Modelling of Contemporary and Future Changes, 169–225. Cambridge University Press, 2004.
  465. C. J. van der Veen and I. M. Whillans. Model experiments on the evolution and stability of ice streams. Ann. Glaciol., 23:129–137, 1996.
  466. N. van der Wel, P. Christoffersen, and M. Bougamont. The influence of subglacial hydrology on the flow of Kamb Ice Stream, West Antarctica. J. Geophys. Res.: Earth Surface, 118:1–14, 2013. doi:10.1029/2012JF002570.
  467. W. van Pelt. Modelling the dynamics and boundary processes of Svalbard glaciers. PhD thesis, Institute for Marine and Atmospheric Research Utrecht (IMAU), The Netherlands, 2013.
  468. W. van Pelt, J. Oerlemans, C. Reijmer, V. Pohjola, R. Pettersson, and J. H. van Angelen. Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model. The Cryosphere, 6(3):641–659, 2012. doi:10.5194/tc-6-641-2012.
  469. W. J. J. van Pelt and J. Oerlemans. Numerical simulations of cyclic behaviour in the parallel ice sheet model (pism). Journal of Glaciology, 58(208):347–360, 2012. doi:10.3189/2012JoG11J217.
  470. W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, R. Pettersson, V. A. Pohjola, E. Isaksson, and D. Divine. An iterative inverse method to estimate basal topography and initialize ice flow models. The Cryosphere, 7(3):987–1006, 2013. doi:10.5194/tc-7-987-2013.
  471. D. Vaughan, J. Bamber, M. Giovinetto, J. Russell, and A. P. Cooper. Reassessment of net surface mass balance in Antarctica. J. Climate, 12:933–946, 1999.
  472. David G. Vaughan and Robert Arthern. Why is it hard to predict the future of ice sheets? Science, 315(5818):1503–1504, 2007. doi:10.1126/science.1141111.
  473. J. L. Vazquez. An introduction to the mathematical theory of the porous medium equation. In Delfour, editor, Shape Optimization and Free Boundaries. Kluwer, 1992.
  474. I. Velicogna and J. Wahr. Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768):1754–1756, 2006. doi:10.1126/science.1123785.
  475. S. S. Vialov. Regularities of glacial shields movement and the theory of plastic viscous flow. In International Association of Scientific Hydrology Publication 47 (Symposium at Chamonix 1958—Physics of the movement of ice), 266–275. 1958.
  476. A. Vieli and A. J. Payne. Assessing the ability of numerical ice sheet models to simulate grounding line migration. J. Geophysical Research, 2005. F01003. doi:10.1029/2004JF000202.
  477. G. J.-M. C. Leysinger Vieli, C. Mart\'ın, R. C. A. Hindmarsh, and M. P. Lüthi. Basal freeze-on generates complex ice-sheet stratigraphy. Nature Communications, nov 2018. doi:10.1038/s41467-018-07083-3.
  478. Curtis R. Vogel. Computational Methods for Inverse Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.
  479. Juan Luis Vázquez. The Porous Medium Equation. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford, 2007.
  480. E. D. Waddington. Accurate modelling of glacier flow. PhD thesis, University of British Columbia, 1981.
  481. J. S. Walder. Stability of sheet flow of water beneath temperate glaciers and implications for glacier surging. J. Glaciol., 28(99):273–293, 1982.
  482. G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge University Press, New York, 1966.
  483. J. Weertman. Stability of ice-age ice sheets. J. Geophys. Res., 66:3783–3792, 1961.
  484. J. Weertman. The theory of glacier sliding. J. Glaciol., 5:287–303, 1964.
  485. M. Weis, R. Greve, and K. Hutter. Theory of shallow ice shelves. Continuum Mech. Thermodyn., 11(1):15–50, 1999.
  486. M. Werder, I. Hewitt, C. Schoof, and G. Flowers. Modeling channelized and distributed subglacial drainage in two dimensions. J Geophys. Res.: Earth Surface, 118(4):2140–2158, 2013.
  487. Pieter Wesseling. Principles of Computational Fluid Dynamics. Springer-Verlag, 2001.
  488. R. Winkelmann and A. Levermann. Linear response functions to project contributions to future sea level. Climate Dynamics, 38:in press, 2012. URL: http://www.pik-potsdam.de/~anders/publications/winkelmann_levermann12c.pdf.
  489. R. Winkelmann, A. Levermann, K. Frieler, and M.A. Martin. Increased future ice discharge from antarctica owing to higher snowfall. Nature, 492:239–242, 2012.
  490. R. Winkelmann, M. A. Martin, M. Haseloff, T. Albrecht, E. Bueler, C. Khroulev, and A. Levermann. The Potsdam Parallel Ice Sheet Model (PISM-PIK) Part 1: Model description. The Cryosphere, 5:715–726, 2011.
  491. C. Wunsch. The Ocean Circulation Inverse Problem. Cambridge University Press, 1996.
  492. Yun Xu, Eric Rignot, Ian Fenty, Dimitris Menemenlis, and M. Mar Flexas. Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophysical Research Letters, 40(17):4648–4653, 2013. doi:10.1002/grl.50825.
  493. M. Zeitz, R. Reese, J. Beckmann, U. Krebs-Kanzow, and R. Winkelmann. Impact of the melt-albedo feedback on the future evolution of the Greenland ice sheet with PISM-dEBM-simple. The Cryosphere, 15(12):5739–5764, 2021. URL: https://tc.copernicus.org/articles/15/5739/2021/, doi:10.5194/tc-15-5739-2021.
  494. F. Ziemen, C. Rodehacke, and U. Mikolajewicz. LGM ice sheets simulated with a complex fully coupled ice sheet–climate model. poster presented at EGU General Assembly, Vienna, Austria, 2012. URL: http://www.mpimet.mpg.de/fileadmin/staff/ziemenflorian/florian_ziemen_egu_2012.pdf.
  495. Lucas K Zoet and Neal R Iverson. A slip law for glaciers on deformable beds. Science, 368(6486):76–78, 2020.
  496. H. J. Zwally and M. B. Giovinetto. Balance mass flux and ice velocity across the equilibrium line in drainage systems of Greenland. J. Geophys. Res., 106(D24):33717–33728, 2001. doi:10.1029/2001JD900120.
  497. H. Jay Zwally, Waleed Abdalati, Tom Herring, Kristine Larson, Jack Saba, and Konrad Steffen. Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579):218–222, 2002. doi:10.1126/science.1072708.
  498. Chris Zweck and Philippe Huybrechts. Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. J. Geophysical Research, 2005. D07103. doi:10.1029/2004JD005489.
  499. Thomas Zwinger, Ralf Greve, Olivier Gagliardini, Takayuki Shiraiwa, and Mikko Lyly. A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka. Ann. Glaciol., 45(1):29–37, 2007.
  500. G. J.-M. C. Leysinger Vieli and G. H. Gudmundsson. On estimating length fluctuations of glaciers caused by changes in climatic forcing. J. Geophys. Res., 2004. F01007. doi:10.1029/2003JF000027.
  501. PETSc web page. 2023. URL: https://petsc.org/.
  502. PISM authors. PISM, a Parallel Ice Sheet Model. 2023. URL: http://www.pism.io/.
  503. PISM authors. PISM, a Parallel Ice Sheet Model: Installation Manual. 2023. URL: http://www.pism.io/docs/installation.
  504. PISM authors. PISM, a Parallel Ice Sheet Model: User's Manual. 2023. URL: http://www.pism.io/docs/manual.
  505. Q. Wang, S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang, T. Jung, and J. Schröter. The Finite Element Sea ice-Ocean Model (FESOM): formulation of an unstructured-mesh ocean general circulation model. Geoscientific Model Development Discussions, 6:3893–3976, July 2013. doi:10.5194/gmdd-6-3893-2013.
  506. EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature, 429:623–628, 2004. doi:10.1038/nature02599.