Ice Sheet Modeling Numerics and Visualization

Ben Sperisen

Who I am and what I did here

- Majoring in physics, computer science, and economics at New Mexico State University.
 - This will be my senior year.
- Worked on ice sheet modeling:
 - learned about how an ice sheet model works
 - improved the way scientists can look at their model's results

What my project is about

- How the equations for ice sheets are solved
 - The Finite Difference Method
- Improving Visualization of the Results of PISM, a Parallel Ice Sheet Model
 - Modifying the output files so they work in IDV
 - Taking advantage of animations and 3D plots to understand results of the model

PDEs describe lots of things ...

- Partial Differential Equations (PDEs) are used to describe a large variety of phenomena, including
 - electric and magnetic fields,
 - heat propagation,
 - fluid flow,
 - air over airplane's wings
 - water flowing in an ocean
 - car traffic,
 - and ice sheets (a fluid flow problem).

The Heat Equation

- Simple example: $\frac{\partial u}{\partial t} = \alpha \nabla^2 u = \alpha \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right]$
 - $\overline{-u(x,y)}$ is temperature
 - $-\alpha$ is some constant
- What does this mean?
 - The more bumpy temperature is, the faster it smooths out.

Solving the Heat Equation

• Using the finite difference method, we get this numerical solution:

$$u_{i,j,k+1} = \frac{\Delta t}{(\Delta x)^2} \left(u_{i+1,j,k} + u_{i-1,j,k} + u_{i,j+1,k} + u_{i,j-1,k} \right) + \left(1 - 4 \frac{\Delta t}{(\Delta x)^2} \right) u_{ijk}$$

- What does this mean?
 - The temperature at a point is updated with a weighted average of the temperatures of its neighbors and itself.

When a numerical solution blows up

- What if $\frac{\Delta t}{(\Delta x)^2} > \frac{1}{4}$?
 - The coefficients for the neighbors' temperatures add up to *more* than 1, and
 - the coefficient for u_{ijk} is negative.
- This is not a weighted average anymore.
 - The heat flowing out of a point is more than the point actually has.
 - The solution blows up.

The Ice-Sheet Equation

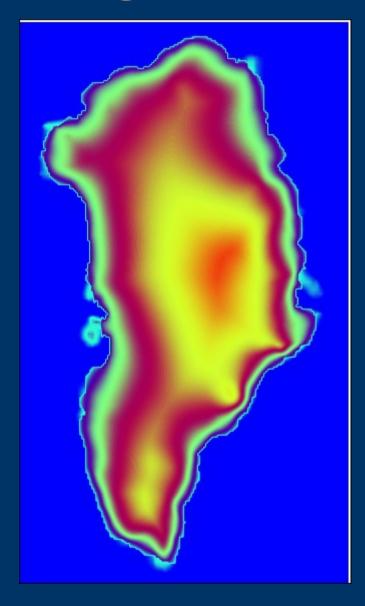
• The ice sheet equation is more complicated:

$$\frac{\partial H}{\partial t} = M + \nabla \cdot (\Gamma H^{n+2} |\nabla H|^{n-1} \nabla H)$$

- H is thickness (height on flat bedrock)
- M is accumulation (snowfall)
- Γ is some constant
- *n* is some exponent in the range $1.8 \le n \le 4$ (3 is usual pick)
- What does this mean?
 - Ice flows downhill, and it flows fastest where the ice is thick and steep (and ice gets thicker when snow falls on it), like molasses on a plate.

Stability of Ice-Sheet Solution

• The requirement for stability of the solution is

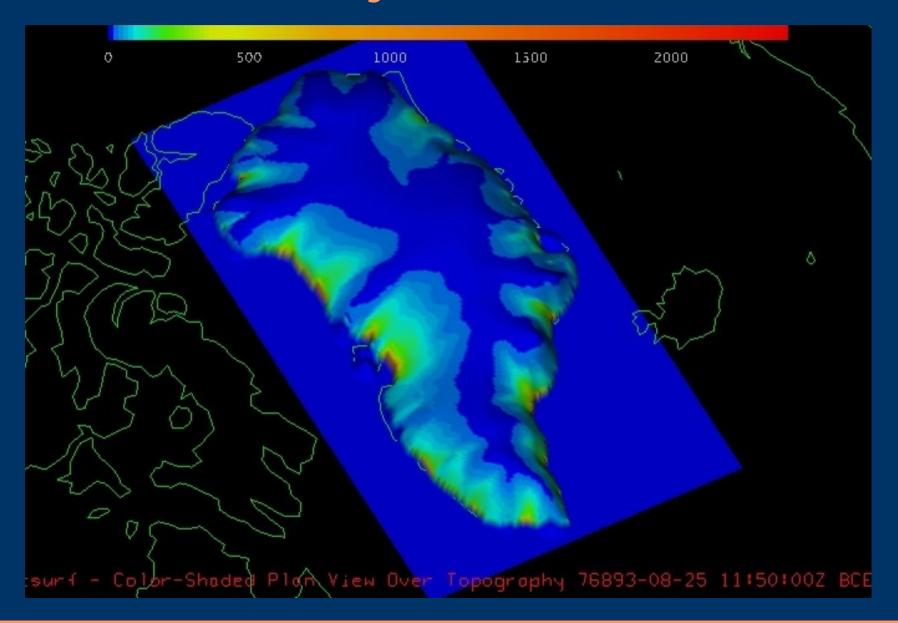

$$\frac{\Delta t}{(\Delta x)^2} < \frac{1}{6} \max \left(\Gamma H^{n+2} |\nabla H|^{n-1} \right)$$

• This means we can vary the time step as needed to improve performance.

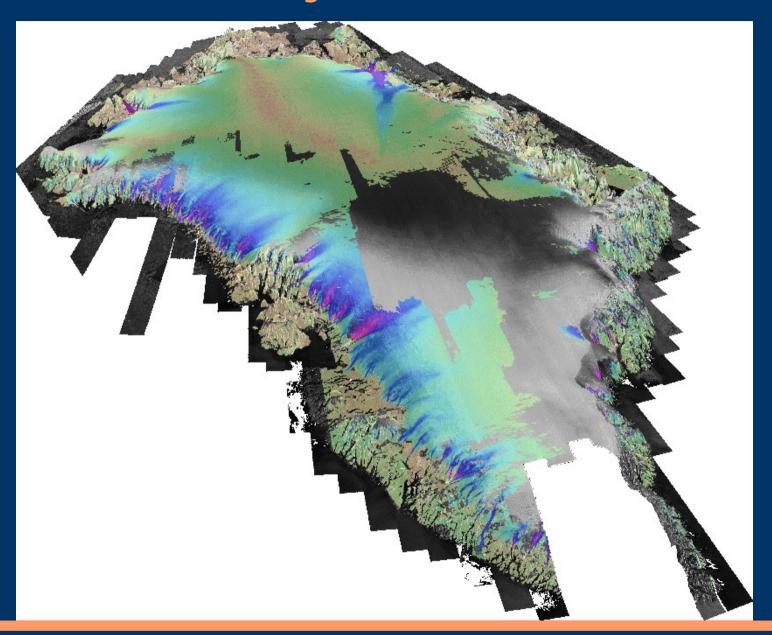
Visualization

- PISM outputs a NetCDF file at the end of a run containing many variables, including:
 - ice thickness,
 - speed of ice,
 - temperature, and
 - age.
- Previously, visualization was done primarily using neview.

ncview showing ice thickness


Advantages of IDV

- IDV can produce visualizations that look better and are often more useful.
 - stack multiple 2D plots on top of each other
 - 3D isosurfaces
 - 3D shape of ice (using ice thickness) colored by ice velocity
 - animations


Making PISM work with IDV

- Several things necessary for me to get PISM to play nice with IDV:
 - Learn IDV (obviously).
 - Transpose *x* and *y* coordinates.
 - Split up PISM runs to save multiple NetCDF files that can be concatenated to make one big file with data over time.
 - useful for animations

Surface velocity seen with IDV

Surface velocity in the real world

Glaciers are cool but hard to study

- I took a class on field methods in glaciology.
- Getting the data that PISM uses as a given is hard.
 - measuring melt
 - mapping the terminus
 - measuring ice thickness

Thank you

- My mentor, Ed Bueler
- Patrick Webb
- Greg Newby