Multi-Modal Flow in a Thermocoupled Model of the Antarctic Ice Sheet, with Verification

Craig Lingle¹ Jed Brown² Ed Bueler²

¹Geophysical Institute University of Alaska Fairbanks, USA

²Department of Mathematics and Statistics University of Alaska Fairbanks, USA

International Glaciological Society
Symposium on Cryospheric Indicators of Global Climate Change, 2006
(note: MINOR ADDITIONS TO TALK AS GIVEN)

Outline

- 1 Continuum model for multi-modal thermocoupled flow
- 2 Verification
- 3 Inputs to the model (for Antarctica)
- 4 Some preliminary results for current state of Antarctica

Outline

- Continuum model for multi-modal thermocoupled flow
 - Constitutive relations and evolution equations
 - Shallow ice approximation (SIA) inland flow
 - Ice shelf and ice stream flow

- - Initialization
 - Velocity and temperature fields
 - Estimation of basal drag

Goldsby-Kohlstedt (2001) constitutive relation

Used in the interior of the ice sheet

Verification

Four flow regimes

Each term is like Arrhenius-Glen-Nye flow law, but with different stress exponent. Note $\dot{\epsilon}$ is 2nd invariant of strain rate tensor $\dot{\epsilon}_{ij}$. $\dot{\epsilon}_{\rm diff}$ diffusion creep (n=1) grain size dependent $\dot{\epsilon}_{\rm gbs}$ grain-boundary sliding (n=1.8) grain size dependent $\dot{\epsilon}_{\rm basal}$ basal glide (n=2.4) $\dot{\epsilon}_{\rm disl}$ dislocation climb (n=4)

A nontrivial combination

$$\dot{\epsilon} = \dot{\epsilon}_{\mathsf{diff}} + \left(\frac{1}{\dot{\epsilon}_{\mathsf{gbs}}} + \frac{1}{\dot{\epsilon}_{\mathsf{basal}}}\right)^{-1} + \dot{\epsilon}_{\mathsf{disl}}$$

Glen's flow law

- used for ice stream/shelf flow
- used for verification
 - time dependent exact solutions to thermocoupled SIA
 - time independent exact solutions for ice streams

Arrhenius-Glen-Nye form

$$\dot{\epsilon}_{ij} = A(T^*)\sigma^{n-1}\sigma_{ij}$$

 $A(T^*)$ softness factor T^* homologous temperature σ_{ij} stress deviator tensor stress exponent σ_{ij} second invariant of σ_{ij} we use Paterson and Budd (1982) form for $A(T^*)$

Inverse Glen's flow law needed for shelf/stream flow

Stress in terms of strain rate

$$\sigma_{ij} = 2\nu(\dot{\epsilon}, T^*)\dot{\epsilon}_{ij}$$

Effective viscosity

For Glen's flow law,

$$\nu(\dot{\epsilon}, T^*) = \frac{1}{2} A(T^*)^{-1/n} \dot{\epsilon}^{\frac{n-1}{n}}$$

Note

It is difficult to invert the Goldsby-Kohlstedt flow law.

Constitutive relations and evolution equations

Mass-balance and conserv. of energy solved everywhere

Map-plane mass-balance equation

$$\frac{\partial H}{\partial t} = M - \nabla \cdot \mathbf{Q}$$
 where $\mathbf{Q} = \overline{\mathbf{U}} H$

H thickness

M ice-equiv. accum. rate

Q map-plane hor. flux

 ${f U}$ vert.-averaged hor. vel.

Conservation of energy (temperature) equation

$$\frac{\partial T}{\partial t} + \mathbf{U} \cdot \nabla T + w \frac{\partial T}{\partial z} = K \frac{\partial^2 T}{\partial z^2} + (\text{strain-heating})$$

T ice temperature

K conductivity of ice

U horizontal velocity

w vertical velocity

Velocity determined locally for inland (SIA) ice sheet

Get velocity in SIA by vertically-integrating this:

$$\frac{\partial \mathbf{U}}{\partial z} = -2F(\sigma, T^*, \dots)P\nabla h$$

$$\begin{split} \sigma &= \rho g(h-z) |\nabla h| \quad \text{shear stress} & T^* \quad \text{homol. temperature} \\ P &= \rho g(h-z) \quad \text{pressure} & h \quad \text{surface elevation} \\ & \quad \left(\textit{Note}: \text{ Add basal velocity } \mathbf{U}_b, \text{ too!}\right) \end{split}$$

Note: all isotropic flow laws have form

$$\dot{\epsilon}_{ij} = F(\sigma, T^*, \dots) \sigma_{ij}$$

where "..." might include grain size, pressure, etc.

Velocity determined "globally" in streams and shelves

MacAyeal-Morland equations for Glen law

Velocity in ice shelves and streams is depth-independent. Solve a boundary-value problem at each time:

$$[2\nu H(2u_x + v_y)]_x + [\nu H(u_y + v_x)]_y - \beta u = \rho g H h_x$$
$$[2\nu H(2v_y + u_x)]_y + [\nu H(u_y + v_x)]_x - \beta v = \rho g H h_y$$

where effective viscosity depends on velocity and temperature:

$$\nu = \frac{\overline{B}}{2} \left[\frac{1}{2} u_x^2 + \frac{1}{2} v_y^2 + \frac{1}{2} (u_x + v_y)^2 + \frac{1}{4} (u_y + v_x)^2 \right]^{\frac{1-n}{2n}},$$

$$\overline{B} = \left(\text{vertical average of } A(T^*)^{-1/n} \right)$$

Thermally-activated

If the bed temp is below pressure-melting then no sliding.

Inland ice sheet flow

Assume till has viscosity ν and thickness L. Basal velocity from basal effective shear stress:

$$({\rm basal\ velocity}) = \frac{L}{\nu}({\rm basal\ stress})$$

Ice stream flow

Basal stress determined by friction parameter β ($\beta = 0$ for shelves):

(basal stress) =
$$\beta$$
(basal velocity)

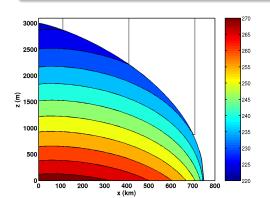
Outline

- Continuum model for multi-modal thermocoupled flow
 - Constitutive relations and evolution equations
 - Shallow ice approximation (SIA) inland flow
 - Ice shelf and ice stream flow
- 2 Verification
- 3 Inputs to the model (for Antarctica)
- Some preliminary results for current state of Antarctica
 - Initialization
 - Velocity and temperature fields
 - Estimation of basal drag

Time-dependent exact solution to thermocoupled SIA equations

H,T chosen

compute accumulation, velocity, strain-heating, etc. which satisfy all egns

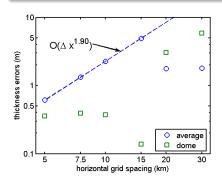


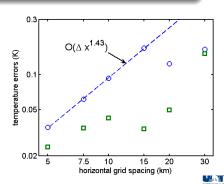
Reference

Bueler, Kallen-Brown, Lingle, Exact solutions to thermocoupled ice-sheet models submitted soon!

Because we know exact solution,

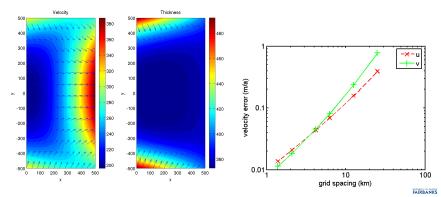
- numerical errors (thickness and temperature) are known and
- convergence rate under grid refinement can be measured.





Exact solution to the MacAyeal-Morland equations

u, v, H chosen \longrightarrow (compute drag which satisfies eqns)



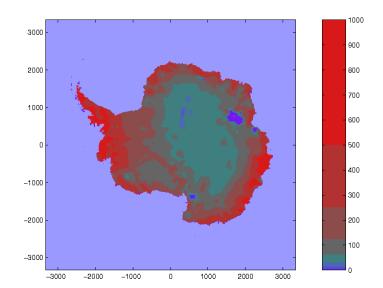
Outline

- Continuum model for multi-modal thermocoupled flow
 - Constitutive relations and evolution equations
 - Shallow ice approximation (SIA) inland flow
 - Ice shelf and ice stream flow
- 2 Verification
- 3 Inputs to the model (for Antarctica)
- Some preliminary results for current state of Antarctica
 - Initialization
 - Velocity and temperature fields
 - Estimation of basal drag

Inputs to the model

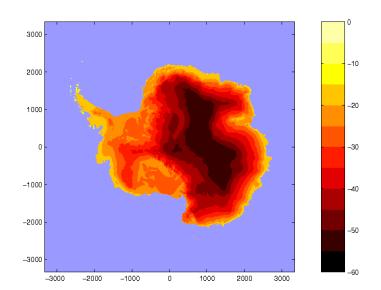
Accumulation (m/a)

Vaughan et al., 1999, provided by British Antarctic Survey

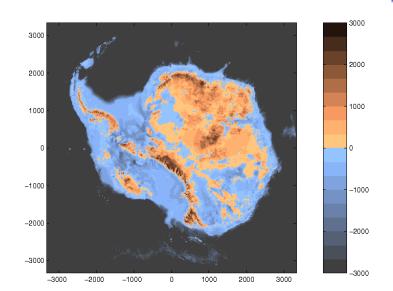


Inputs to the model

Surface temperature (K) Comiso et al (2000), provided by BAS



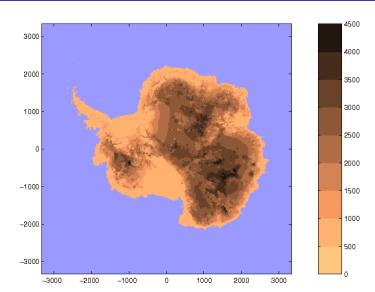
Bed elevation (m) BEDMAP, Lythe et al (2001), provided by BAS



Inputs to the model

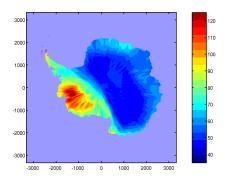
Thickness (m)

Based on BEDMAP and surface elevations from Liu et al (1999), and provided by BAS

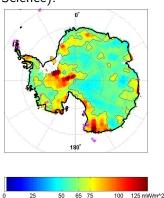


Geothermal flux (mW/m²)

Shapiro & Ritzwoller (2004; Earth Planetary Sci. Let.); results computed from this one:

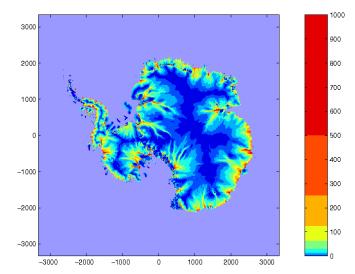


Fox Maule et al. (2005; Science):



Inputs to the model

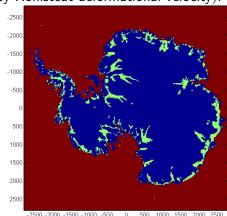
Balance velocity is used for flow mode "mask" Bamber et al (2000) based on Budd and Warner (1996) algorithm



The which-type-of-flow mask

Flow type is determined for current state by (sliding velocity) = (balance velocity) – (Goldsby-Kohlstedt deformational velocity):

- red if ice is floating (or ice-free ocean)
- blue (inland SIA) if $(sliding) \le 40 \,\mathrm{m}\,\mathrm{a}^{-1}$
- green (ice stream) if $(sliding) > 40 \,\mathrm{m}\,\mathrm{a}^{-1}$



Outline

- Continuum model for multi-modal thermocoupled flow
 - Constitutive relations and evolution equations
 - Shallow ice approximation (SIA) inland flow
 - Ice shelf and ice stream flow
- 2 Verification
- Inputs to the model (for Antarctica)
- 4 Some preliminary results for current state of Antarctica
 - Initialization
 - Velocity and temperature fields
 - Estimation of basal drag

Initializing a numerical ice sheet model for real ice sheets means solving obligatory inverse problems

Boundary data available to modellers:

surface elevation, thickness, bed elevation, accumulation, surface temperature, geothermal flux [from other models], mass-balance velocities [assumptions plus computations], ...

SPARSE data at depth (e.g. ice core data)

temperature, age, grain size, basal condition [very sparse], ...

Initializing means solving inverse problems cont.

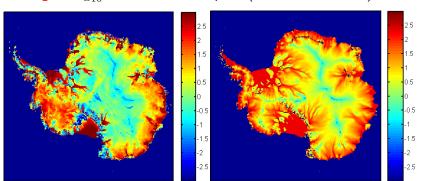
Must "fill in" (or guess) to initialize simulation

- temperature (long "spin-up" to meet advection time scale)
- basal condition (drag)
- age and grain size (needed by G.-K. flow law)

Reminder: With above fields, flow equations determine velocity field, but velocity field effects temperature and basal conditions...

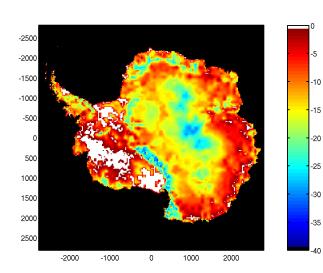
Modeled horizontal velocity [preliminary]

- \bullet left: \log_{10} of vertically-averaged horizontal speed
- right: \log_{10} of mass-balance speed (Bamber et al 2000)



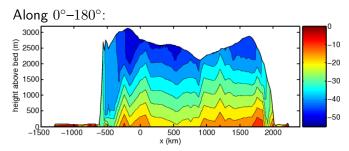
Velocity and temperature fields

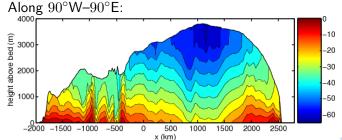
Modeled basal homologous temperature [preliminary] (degrees C below pressure melting)



0000000

Modeled temp along sections through S pole [preliminary]

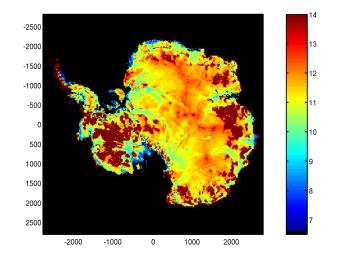




Continuum model

Basal drag assuming linear law: (stress) = $-\beta \mathbf{U}_{\text{sliding}}$

 $\log_{10}(\beta)$ where β is in units Pas m⁻¹. Compare constant value $2.0 \times 10^9 \, \mathrm{Pa} \, \mathrm{s} \, \mathrm{m}^{-1}$ in (Hulbe and MacAveal 1998). Preliminary.



Continuum model

How the last slide was created

Getting basal drag from balance velocities and the SIA

- deformational (SIA) velocities are computed at all grounded points (using Goldsby-Kohlstedt)
- average deformational velocity is subtracted from mass-balance velocity to give a sliding velocity
- this sliding velocity is put into the MacAyeal-Morland equations at all grounded points to determine the drag coefficient which would give this much sliding

Notes

- If deformational velocities exceed balance velocities then get negative drag! Here we set $\beta = 10^{14} \, \text{Pa} \, \text{s} \, m^{-1}$ in that case.
- Effect of high geothermal flux in Amundsen sector (from Shapiro and Ritzwoller map) is clear.

Summary

Our model

- (SIA and MacAyeal-Morland eqns for flow)
- is verifiable (and verified) for each mode of flow
- solves all equations in parallel (PETSc)
- allows choice of grid resolution at run time
- includes new earth deformation model (that's another talk...)

Planned directions

- consequences of different geothermal flux maps
- improved basal dynamics
- depth-dependent density, calving criteria, . . .
- moving boundary between SIA and ice stream flow

