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The Pretend Shallow Shelf Approximation
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Forward problem: Given a bed strength coefficient y, find ice
velocities (u,v) solving (1). lLe. (u,v) = Fssa(y).

Inverse problem: Given observed ice velocities (u,v), determine the
corresponding bed strength coefficient y.



Inverse problem is ill-posed

Problem 1: (u,v) has twice as many degrees of freedom as y. We
can’t expect any solution at all to exist.

Problem 2: The inverse map Fg, is not continuous. An estimate
for the amount of error in (u,v) does not imply an estimate for the
amount of error in y.
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These problems have been addressed in the ice literature by
minimizing

15) = [ 108v) = Fsa ()P,

typically with steepest descent.



The forward map is smoothing
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The forward map is smoothing




The inverse problem |'d really love to solve

Among all parameters y, find the ‘least featured' one such that
Fssa(y) is ‘consistent’ with observation.

For example, minimize
[Iyllx
subject to
[Fssa(y) = (wv)[[y <&

where § is specified in advance and incorporates estimates for both
model and measurement error.
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Standard approaches to regularization

Tikhonov Regularization:
Minimize
To(y) = J(y) +vlly = yollx

where v is a regularization parameter (TBD).
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Iterative Methods:

e Start with an initial estimate y, for the bed strength and a
desired misfit level .

o lteratively determine a sequence of search directions {hy}.

e Determine yx,1 = yx + tphg with tr minimizing t — J(yx + thy).

e Stop at the first iteration k such that J(yx) < 4.



Why you might believe iterative methods work

For steepest descent,
hie = T ((ui> vie) = (45 v)),
where (uk,vk) = -FSSA(Yk) and T = fS/SA(yk)'

e Because Fssa smooths wiggles, so does T.
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Why you might believe iterative methods work

For steepest descent,
hie = T ((ui> vie) = (45 v)),
where (uy, vk) = Fssa(yx) and T = Figp (yk)-

e Because Fssa smooths wiggles, so does T.
e Because T smooths wiggles, so does T*.

e So the search direction is a 'smoothed out’ version of the
residual.

e Other minimization methods based on the gradient (e.g.
nonlinear conjugate gradient method) can be expected to
have this same property.



Gauss-Newton Method
Method for minimizing nonlinear least-squares problem, e.g.

J() =ly - Fssa)I3-

o At iterate yy, define
Fi(h) = Fssa(yr) + Fesa(x)[h] ~ Fosa(xi + h)

e Determine a search direction h; by minimizing the quadratic
functional

Ji(h) = lly = Fe(B)Ily
e Determine yx,1 = yx + tphg with tr minimizing t — J(yx + thy).
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But if the original minimization problem for J is ill-posed, so is the
minimization problem for Jj.



Gauss-Newton Method
Method for minimizing nonlinear least-squares problem, e.g.

J() =ly - Fssa)I3-

o At iterate yy, define
Fi(h) = Fssa(yr) + Fesa(x)[h] ~ Fosa(xi + h)

e Determine a search direction h; by minimizing the quadratic
functional

Ji(h) = lly = Fe(B)Ily
e Determine yx,1 = yx + tphg with tr minimizing t — J(yx + thy).

Iteratively Regularized Gauss-Newton:
Determine search directions hj by minimizing

Jk(h) = lly = Fe(W)II + vil k%



Incomplete Gauss Newton

e Start with an initial estimate y, for the bed strength and a
desired misfit level §.

e At iteration yi, determine the current misfit 8, and construct
quadratic functional Ji.

e Use linear conjugate gradient method on J; to correct a
fraction 0 of the remaining misfit 8, — 6.

e This determines a search direction hj, now minimize
t > J(yr + thy).

e Manage 6 if the resulting misfit decrease is poor.



What's good

e The extra information required for regularization is very
tangible: an initial estimate y, and an estimate for the error §

in the measurements and model.

e The method is comparatively fast:
e Nothing is ever optimized completely.
o Linesearches (i.e. determining step t; along hy) often
terminate after one nonlinear function evaluation.
e Linear inverse problems at each iteration are cheap to solve
(linear conjugate gradient method, stopping early).



What's good

45 . ‘
= Incomplete Gauss-Newton
a0 . . . q
= Nonlinear Conjugate Gradient
35 ~— Steepest descent
30
=25
£
n
=20
15
10
5
0 . . ‘ .
0 50 100 150 200

lteration



Reconstructions for 2d synthetic data

Reconstruction of basal stress starting with several initial estimates
via steepest descent. (Joughin, MacAyeal, Tulaczyk '04)
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Reconstructions for 2d synthetic data

Reconstructions via incomplete Gauss-Newton.
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What's not so good

For the applicability of adjoints, domain and range need to be
Hilbert spaces. E.g. no L' or L norms allowed.

You still need to fully solve a number of nonlinear forward
problems.

| don't know how to tell you how to pick .

There's no proof that any of this works.



A lonely ice stream
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Ice stream is embedded in a larger sheet of length L varying from
L =10, to L =1000.
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Lonely ice stream reconstructions
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Lonely ice stream reconstructions
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