Computing glacier geometry in nonlinear complementarity problem form

Ed Bueler

Dept of Mathematics and Statistics, and Geophysical Institute
University of Alaska Fairbanks
(funded by NASA Modeling, Analysis, and Prediction program)

outline

- NCPs and VIs, a superficial intro
- 2 glacier geometry-evolution models
- every time-step is free-boundary problem
- 4 proposed approach: FVE discretization + Newton + continuation
- 5 partial success ... and the essential difficulty

nonlinear complementarity problems (NCP)

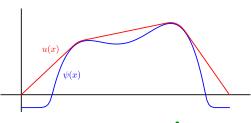
• in finite dimensions, an NCP is to find $\mathbf{z} \in \mathbb{R}^n$ for which

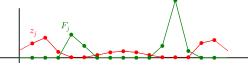
$$\mathbf{z} \ge 0, \quad \mathbf{F}(\mathbf{z}) \ge 0, \quad \mathbf{z}^{\top} \mathbf{F}(\mathbf{z}) = 0,$$
 (1)

given a differentiable map $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$

- example: given $\psi(x)$, the 1d obstacle problem is to find u(x) so that $u(x) \ge \psi(x)$ and -u''(x) = 0 where $u > \psi$
- ...think about the gap ...
- discretized and in form (1):

$$\mathbf{z}_{j} = u_{j} - \psi(x_{j})$$
 $F_{j}(\mathbf{z}) = -\frac{z_{j+1} - 2z_{j} + z_{j-1}}{\Delta x^{2}} - \psi_{j}''$





variational inequalities (VI)

• in finite dimensions, a VI is to find $\mathbf{u} \in \mathcal{K}$, where $\mathcal{K} \subseteq \mathbb{R}^n$ is convex and closed, for which

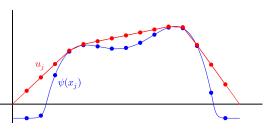
$$\langle \mathbf{F}(\mathbf{u}), \mathbf{v} - \mathbf{u} \rangle \ge 0 \quad \forall \mathbf{v} \in \mathcal{K},$$
 (2)

given a differentiable map $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$

obstacle problem:

$$\mathcal{K} = \{ \underbrace{\textit{u}_\textit{j}} \geq \psi(\textit{x}_\textit{j}) \}$$
 and

$$F_j(\mathbf{u}) = -\frac{u_{j+1} - 2u_j + u_{j-1}}{\Delta x^2}$$



NCP/VI generalities

• in finite dimensions when K is a cone (as in this talk):

$$NCP \iff VI$$

- both
 - generalize nonlinear eqns " $\mathbf{F}(\mathbf{z}) = 0$ " to allow constraints on \mathbf{z}
 - o are nonlinear, even if **F** is linear or affine
 - in practice: need iterative approach to solve
- o constrained optimization ⇒ VI ⇔ NCP
 - o i.e. find minimum of $\Phi[\mathbf{z}]$ from \mathcal{K}
 - symmetric Jacobian/Hessian in optimizations ($J = \mathbf{F}' = \Phi''$)
- but: NCP and VI arising in glacier problems are not optimizations

numerical support

libraries with scalable support for NCP and/or VI:

- PETSc SNES
 - does not assume optimization
 - used this in all results later in talk
- TAO
 - in PETSc release
 - separate code from SNES
- DUNE
 - used in 2011 ... still maintained?

algorithms

two Newton line search NCP methods in PETSc SNES:1

- "reduced-space" = RS
 - active set $A = \{i : z_i = 0 \text{ and } F_i(\mathbf{z}) > 0\}$
 - inactive set $\mathcal{I} = \{i : z_i > 0 \text{ or } F_i(\mathbf{z}) \leq 0\}$
 - algorithm: compute Newton step s^k by

$$\left[\textbf{\textit{J}}(\textbf{\textit{z}}^k) \right]_{\mathcal{I}^k,\mathcal{I}^k} \textbf{\textit{s}}_{\mathcal{I}^k} = -\textbf{\textit{F}}_{\mathcal{I}^k}(\textbf{\textit{z}}^k)$$

then do projected line search onto $\{z \ge 0\}$

- "semi-smooth" = SS
 - "NCP function":

$$\phi(a,b)=0 \quad \iff \quad a\geq 0, b\geq 0, ab=0$$

algorithm: compute Newton step s^k by

$$L^k \mathbf{s}^k = -\phi(\mathbf{z}^k, \mathbf{F}^k(\mathbf{z}^k))$$

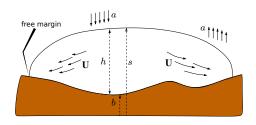
where L^k is element of $\partial_B \phi(\mathbf{z}^k, \mathbf{F}^k(\mathbf{z}^k))$; then do line search

¹Benson & Munson (2006), and Barry Smith

outline

- NCPs and VIs, a superficial intro
- glacier geometry-evolution models
- every time-step is free-boundary problem
- 4 proposed approach: FVE discretization + Newton + continuation
- 5 partial success ... and the essential difficulty

glacier (and ice sheet) notation

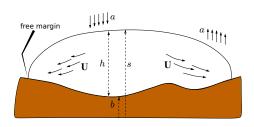


- unknowns:
 - o h(t, x, y) ice thickness

... also s = h + b surface elevation

- $\mathbf{U}(t, x, y, z) = \langle u, v, w \rangle$ ice velocity
- data:
 - o b(x, y) bed elevation
 - o a(t, x, y) surface mass balance
 - ★ accumulation/ablation function; = precipitation melt
- ignored in this talk:
 - conservation of energy (temperature/enthalpy)
 - floating ice
 - solid-earth deformation

glacier (and ice sheet) notation



- unknowns:
 - o h(t, x, y) ice thickness ... also s = h + b surface elevation
 - $\mathbf{U}(t, x, y, z) = \langle u, v, w \rangle$ ice velocity
- uncertain "data" from other models:
 - o b(x, y) bed elevation ? ... improving for ice sheets
 - a(t, x, y) surface mass balance ????
 - ★ accumulation/ablation function; = precipitation melt
- ignored in this talk:
 - conservation of energy (temperature/enthalpy)
 - floating ice
 - solid-earth deformation

solve coupled mass and momentum equations

- my goal: better ice sheet models
 - \circ suitable for long/paleo (\sim 100ka) and high res (\sim 1 km)
 - without time-splitting
 - with explicit time-step restrictions
- here just two coupled conservations:
 - mass conservation

$$h_t + \nabla \cdot \mathbf{q} = a$$

- ★ $\mathbf{q} = h \langle \bar{u}, \bar{v} \rangle$ is vertically-integrated ice flux
- ★ equivalent to "surface kinematical equation" (ice incompressible)
- momentum conservation

$$\nabla \cdot \mathbf{U} = \mathbf{0}$$
 and $-\nabla \cdot \tau_{ii} + \nabla p - \rho \, \mathbf{g} = \mathbf{0}$

- ★ incompressible power-law Stokes ($D_{ii} = A\tau^{\nu-1}\tau_{ii}$ for $\nu=3$)
- ★ geometry (h & b) enters into boundary conditions

solve coupled mass and momentum equations

my goal: better ice sheet models

- vs PISM
- $\circ~$ suitable for long/paleo (\sim 100ka) and high res (\sim 1 km)

without time-splittingwith explicit time-step restrictions

(3)

- here just two coupled conservations:
 - mass conservation

$$h_t + \nabla \cdot \mathbf{q} = a$$

- ★ $\mathbf{q} = h \langle \bar{u}, \bar{v} \rangle$ is vertically-integrated ice flux
- equivalent to "surface kinematical equation" (ice incompressible)
- momentum conservation

$$\nabla \cdot \mathbf{U} = 0$$
 and $-\nabla \cdot \tau_{ii} + \nabla p - \rho \, \mathbf{g} = 0$

- ★ incompressible power-law Stokes ($D_{ij} = A\tau^{\nu-1}\tau_{ij}$ for $\nu = 3$)
- ★ geometry (h & b) enters into boundary conditions

many possible momentum equations

incompressible power-law Stokes

$$abla \cdot \mathbf{U} = 0$$
 and $-\nabla \cdot au_{ij} + \nabla p - \rho \, \mathbf{g} = 0$

• Blatter-Pattyn equations [η is effective viscosity]

$$-\nabla \cdot \begin{bmatrix} \eta \begin{pmatrix} 4u_x + 2v_y & u_y + v_x & u_z \\ u_y + v_x & 2u_x + 4v_y & v_z \end{pmatrix} \end{bmatrix} + \rho g \nabla s = 0$$

shallow shelf approximation (SSA)

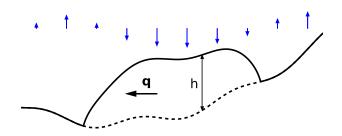
$$-\nabla \cdot \left[\bar{\eta} h \begin{pmatrix} 4\bar{u}_x + 2\bar{v}_y & \bar{u}_y + \bar{v}_x \\ \bar{u}_y + \bar{v}_x & 2\bar{u}_x + 4\bar{v}_y \end{pmatrix} \right] - \tau_b + \rho g h \nabla s = 0$$

non-sliding shallow ice approximation (SIA)

$$-\frac{\partial}{\partial z}\left[\eta\begin{pmatrix} u_z\\v_z\end{pmatrix}\right]+\rho g\nabla s=0\qquad \rightarrow\qquad \langle\bar{u},\bar{v}\rangle=-\Gamma h^{\nu+2}|\nabla s|^{\nu-1}\nabla s$$

- slow fluid momentum-conservation models all generate velocity $\mathbf{U} = \langle u, v, w \rangle$ from geometry h & b
- momentum equations are $\mathcal{M}(\mathbf{U}, h, b) = 0$

a fluid layer in a climate



- mass conservation equation on last slide applies to broader class:
 a fluid layer on a substrate, evolving in a climate
- mass conservation PDE:

$$h_t + \nabla \cdot \mathbf{q} = \mathbf{a} \tag{*}$$

- h is a thickness so h > 0
- (*) applies only where h > 0
- o signed source a is the "climate"

fluid layers in climates

glaciers

tidewater marsh

sea ice (& ice shelves)

tsunami inundation

fluid layers in climates

glaciers

tidewater marsh

sea ice (& ice shelves)

surface hydrology, subglacial hydrology, ...

outline

- NCPs and VIs, a superficial intro
- 2 glacier geometry-evolution models
- every time-step is free-boundary problem
- 4 proposed approach: FVE discretization + Newton + continuation
- 5 partial success ... and the essential difficulty

semi-discretize in time

• semi-discretize coupled model (e.g. $h^{\ell}(x,y) \approx h(t^{\ell},x,y)$)

$$egin{aligned} h_t +
abla \cdot \mathbf{q} &= a & rac{h^\ell - h^{\ell - 1}}{\Delta t} +
abla \cdot \mathbf{q}^\ell &= a^\ell \ & \mathcal{M}(\mathbf{U}, h, b) &= 0 & \mathcal{M}(\mathbf{U}^\ell, h^\ell, b) &= 0 \end{aligned}$$

- coupling also through $\mathbf{q} = \mathbf{q}(\mathbf{U}, h)$
- ullet details of flux ${f q}^\ell$ and source a^ℓ come from time-stepping scheme
 - backward-Euler shown
 - \circ could use other θ -methods or BDFs
- need to weakly-pose single time-step mass conservation equation incorporating $h^\ell \geq 0$ constraint . . . it generates the free boundary

semi-discretize in time

• semi-discretize coupled model (e.g. $h^{\ell}(x,y) \approx h(t^{\ell},x,y)$)

$$h_t + \nabla \cdot \mathbf{q} = a$$
 $\qquad \qquad \frac{h^{\ell} - h^{\ell-1}}{\Delta t} + \nabla \cdot \mathbf{q}^{\ell} = a^{\ell}$ $\qquad \qquad \rightarrow$ $\mathcal{M}(\mathbf{U}, h, b) = 0$ $\qquad \qquad \mathcal{M}(\mathbf{U}^{\ell}, h^{\ell}, b) = 0$

- coupling also through $\mathbf{q} = \mathbf{q}(\mathbf{U}, h)$
- details of flux \mathbf{q}^{ℓ} and source a^{ℓ} come from time-stepping scheme
 - backward-Euler shown
 - \circ could use other θ -methods or BDFs
- need to weakly-pose single time-step mass conservation equation incorporating $h^\ell \geq 0$ constraint . . . it generates the free boundary

mass conservation: VI form

single time-step mass conservation equation

$$rac{h^\ell - h^{\ell-1}}{\Delta t} +
abla \cdot \mathbf{q}^\ell = a^\ell$$
 (MC)

- from now on: assume $\mathbf{q} = 0$ on any open set where h = 0
 - because it is a flowing layer
- first weak formulations of MC for glaciers were VIs
 - o Calvo et al (2002): SIA 1d flat bed
 - Jouvet & Bueler (2012): SIA 2d general bed steady
- define $\mathcal{K} = \left\{ v \in W^{1,p}(\Omega) \mid v \geq 0 \right\}$
- VI form of MC: find $h^{\ell} \in \mathcal{K}$

$$\int_{\Omega} h^{\ell}(v - h^{\ell}) - \Delta t \, \mathbf{q}^{\ell} \cdot \nabla(v - h^{\ell}) \ge \int_{\Omega} \left(h^{\ell-1} + \Delta t \, \mathbf{a}^{\ell} \right) (v - h^{\ell})$$

for all $v \in \mathcal{K}$

mass conservation: NCP form

recall general NCP is

$$\mathbf{z} \geq \mathbf{0}, \quad \mathbf{F}(\mathbf{z}) \geq \mathbf{0}, \quad \mathbf{z}^{\top} \mathbf{F}(\mathbf{z}) = \mathbf{0}$$

define

$$F(h) = h^{\ell} - h^{\ell-1} + \Delta t \, \nabla \cdot \mathbf{q}^{\ell} - \Delta t \, a^{\ell}$$

NCP form of MC:

$$h^{\ell} \geq 0$$
, $F(h^{\ell}) \geq 0$, $h^{\ell}F(h^{\ell}) = 0$

- setwise statements from the NCP:
 - where $h^{\ell} > 0$,

$$F(h^{\ell}) = 0 \iff \text{strong form MC}$$

- * interior condition
- where $h^{\ell} = 0$,

$$h^{\ell-1} + \Delta t a^{\ell} \leq 0$$

* says "surface mass balance is negative enough during time step to remove old thickness"

outline

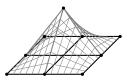
- NCPs and VIs, a superficial intro
- 2 glacier geometry-evolution models
- every time-step is free-boundary problem
- proposed approach: FVE discretization + Newton + continuation
- 5 partial success ... and the essential difficulty

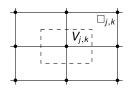
finite volume element (FVE) discretization

- from now on in this talk: steady case ($\Delta t = \infty$)
- for FVE, see Cai (1990) and Ewing, Lin, & Lin (2002)
- thickness h(x,y) lives in Q^1 FEM space $\subset W^{1,\nu+1}(\Omega)$
 - structured grid for now; h bilinear on elements $\square_{j,k}$
- mass conservation \iff control-volume integral on $V = V_{i,k}$:

$$\nabla \cdot \mathbf{q} = a \qquad \iff \qquad \int_{\partial V} \mathbf{q} \cdot \mathbf{n} \, ds \stackrel{*}{=} \int_{V} a \, dx \, dy$$

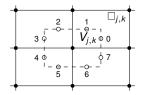
- thus: a finite element method where * is the weak form
 - o or: Petrov-Galerkin FEM with χ_V as test function
 - no symmetry in weak form ... no loss





quadrature and upwinding

- FD schemes fit into above FVE framework
 - old FD scheme by Mahaffy (1976) fits ... has weird quadrature
 - o improved convergence comes from using quadrature points below:



- a bit of upwinding improves convergence on non-flat beds
 - o ... even though this is a fully-implicit approach
 - tested on bedrock-step exact solution (Jarosch et al 2013)
 - o details out of scope here

restrict to SIA

- from now on: restrict to nonsliding SIA
- steady SIA mass conservation equation (SIA MC)

$$\nabla \cdot \mathbf{q} = a, \qquad \mathbf{q} = -\Gamma h^{\nu+2} |\nabla s|^{\nu-1} \nabla s$$

- recall s = h + b
- main idea: subject to constraint $h \ge 0$, thus an NCP or VI

ad hoc continuation scheme

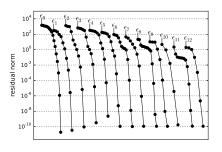
- for $0 \le \epsilon \le 1$, regularize $\mathbf{q}^{(\epsilon)}$ so that
 - $\epsilon_k = 10^{-k/3}$ for k = 0, 1, ..., 11 and $\epsilon_{12} = 0$
 - $\circ~\boldsymbol{q}^{(\epsilon_0)}$ with $\epsilon_0=1$ gives classical obstacle problem

$$-\nabla\cdot(D_0\nabla s)=a$$

 \circ $\mathbf{q}^{(\epsilon_{12})}$ with $\epsilon_{12}=0$ gives SIA model

$$-\nabla \cdot (\Gamma h^{\nu+2} |\nabla s|^{\nu-1} \nabla s) = a$$

• in idealized cases, quadratic convergence at each level:

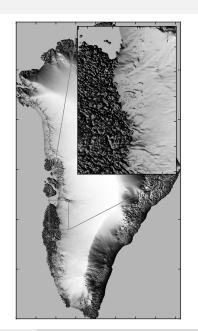


outline

- NCPs and VIs, a superficial intro
- 2 glacier geometry-evolution models
- every time-step is free-boundary problem
- 4 proposed approach: FVE discretization + Newton + continuation
- 5 partial success ... and the essential difficulty

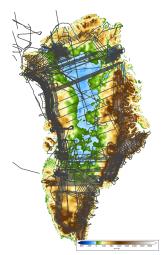
example: Greenland ice sheet

- goal: given steady surface mass balance a(x, y) and bedrock elevation b(x, y), predict the steady geometry h(x, y) of the Greenland ice sheet
- method: solve steady SIA MC NCP
 - reduced-space Newton method
 - 900 m structured grid
 - Q¹ FEs in space
 - $\,\circ\,\,$ $N = 7 \times 10^6 \,\, d.o.f.$
- result: at right
 - see Bueler (2016), J. Glaciol.



the essential difficulty: NASA's darn airplanes

actually: bedrock roughness

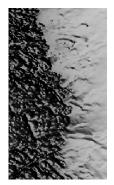


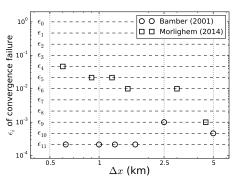
flight lines (OIB 2009-2014)

result: Morlighem (2014) bed map

convergence consequences

- improved bed observations ⇒ worse NCP solver convergence
 - old bed: Bamber (2001) on 5 km grid
 - new bed: Morlighem (2014) on 150 m grid
 - o results shown for RS; SS is similar





rougher bed

poorer Newton-solver convergence

summary

- *problem*: fluid layer conservation model $h_t + \nabla \cdot \mathbf{q} = a$
 - subject to signed climate a
 - thickness h is nonnegative
 - coupled to momentum solver, for **U** in $\mathbf{q} = \mathbf{q}(\mathbf{U}, h)$
- goals:
 - long time steps, no first-order splitting errors
- approach:
 - take discrete-time, continuous-space seriously
 - pose single time-step weakly as NCP or VI
 - ★ incorporates constraint h > 0
 - * approach is largely flux-agnostic
 - o solve by scalable constrained-Newton method (e.g. PETSc)
- challenges:
 - bed roughness makes convergence hard
 - every time step generates a near-fractal icy domain
 (e.g. continental ice sheet), via free-boundary problem, on which momentum solve must be accurate especially near the boundary