Optimal solvers for partial differential equations

Ed Bueler

Dept of Mathematics and Statistics and Geophysical Institute
University of Alaska Fairbanks

DMS Colloquium 28 November, 2017

why this talk?

- I have been thinking about what are the goals of codes which numerically solve differential equations
- there are reliable black boxes for ODE IVPs
 - o ode45 in MATLAB
- what properties would a good PDE black box have?

Outline

how to approximately solve a PDE

what is an "optimal solver"?

multigrid

barriers & extensions to optimality

Poisson equation

- for much of this talk I'll use two example PDE problems
- 1. Poisson equation with Dirichlet boundary conditions:

$$-\nabla^2 u = f \qquad \text{ on } \Omega \subset \mathbb{R}^d \text{ with } u\big|_{\partial\Omega} = g,$$

- \circ a linear elliptic PDE problem in dimension d=2 or d=3
- \circ recall that $\nabla^2 u = \nabla \cdot (\nabla u) = u_{xx} + u_{yy} + u_{zz}$
- $\ \, \circ \ \, {\rm source} \,\, f(x,y,z) \,\, {\rm given} \,\,$
- boundary values g(x, y, z) given
- $\circ\,$ will use various domains Ω including a square, a cube, and
 - a snowflake fractal

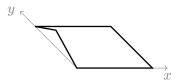
 \circ the solution u(x,y,z) of $-\nabla^2 u=1$ with g=0 gives the expected time for a Brownian motion to first hit $\partial\Omega$

minimal surface equation

2. minimal surface equation (MSE) with Dirichlet b.c.s:

$$-\nabla \cdot \left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0 \qquad \text{ with } \left.u\right|_{\partial\Omega} = g.$$

- o a nonlinear elliptic PDE in 2D
- $\quad \text{o here: square domain } \Omega = [0,1] \times [0,1]$
- the solution u(x,y) gives the height of a zero-gravity soap bubble which spans a wire frame with height z=g(x,y):



today's talk: mostly elliptic PDEs

both examples 1 & 2

- are well-posed elliptic PDE BVPs
- seek solution u from an ∞ -dimensional vector space
- main idea: a PDE BVP is a system of ∞ egns in ∞ unknowns

fine print:

- both examples derivable from variational principles, thus well-posed
- the " ∞ -dimensional vector space" is a Sobolev space such as $H^1(\Omega)$

approximation: finite difference method

- most problems are not solvable exactly, so we
 - \circ approximate by N equations in N unknowns
 - \circ where $N \in \mathbb{Z}^+$ so $N \ll \infty$
- one method is *finite differences* (FDM), based on

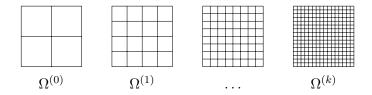
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx \frac{f(x+h) - f(x)}{h}$$

• for the 2D Poisson equation:

$$u_{xx} + u_{yy} \approx \frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{ij}}{h^2}$$

structured grids notation

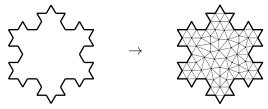
- a structured grid is a product of 1D grids
- consider sequence of such grids $\Omega^{(k)}$ on squares or cubes
- notation: level k grid has spacing h_k in each direction



- N_k is the number of equations and of unknowns
- "increasing resolution" means $h_k o 0$ and $N_k o \infty$
 - o a.k.a. "refinement"
 - $\circ N_k = O(h_k^{-d})$ grid points in d dimensions
 - typically: $N_{k+1} \approx 2^d N_k$

approximation: finite element method (FEM)

- FEM discretization is well-suited to unstructured meshes of arbitrary polygonal/polyhedral domains
 - o e.g. triangulate the snowflake:



- FEM uses the weak form of the PDE
- example: for the Poisson equation it is

$$\int\limits_{\Omega} \nabla u \cdot \nabla v = \int\limits_{\Omega} fv \qquad \forall v \in H_0^1(\Omega)$$

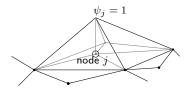
- \circ derivation: multiply PDE by v and integrate by parts
- Fall 2018: graduate seminar in FEM

finite element method

in more detail, the FEM uses

- ullet a triangular/quadrilateral/tetrahedral/etc. mesh of N nodes on Ω
- ullet an N-dimensional subspace $\mathcal{X}\subset H^1(\Omega)$
- basis of hat functions $\psi_j(x,y)$

$$\psi_i(x_i,y_i)=1$$



then the FEM

defines

$$u(x,y) = \sum_{j} u_j \, \psi_j(x,y)$$

for unknown coefficients $\mathbf{u} = \{u_j\} \in \mathbb{R}^N \ (N \ \text{unknowns})$

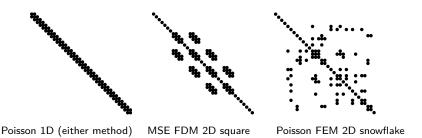
• requires the weak form to hold for all $v=\psi_i$ (N eqns)

sparse matrices

- both methods (F D M) produce sparse matrices
- for example, the Poisson equation becomes a linear system

$$A\mathbf{u} = \mathbf{b}$$

- $\circ \ \ A \in \mathbb{R}^{N \times N} \ \text{is sparse}$
- \circ A is symmetric positive definite (SPD)
- pro tip: Matlab's spy(A) shows nonzero structure



nonlinear PDEs make sparse matrices too

 F^D_E M applied to a nonlinear elliptic PDE BVP gives a nonlinear (algebraic) system of N equations in N unknowns:

$$\mathbf{F}(\mathbf{u}) = 0$$

- o $\mathbf{F}: \mathbb{R}^N o \mathbb{R}^N$ is a nonlinear function
- \circ call $\mathbf{F}(\mathbf{w})$ the *residual* if \mathbf{w} is a guess at the solution
- usually apply Newton's method to solve:

$$J_{\mathbf{F}}(\mathbf{u}_{\ell})\,\mathbf{s} = -\mathbf{F}(\mathbf{u}_{\ell})$$
$$\mathbf{u}_{\ell+1} = \mathbf{u}_{\ell} + \mathbf{s}$$

- $\circ \ J_{\mathbf{F}}(\mathbf{w}) \in \mathbb{R}^{N imes N}$ is the Jacobian of \mathbf{F}
- o it is a sparse matrix (right)

Outline

how to approximately solve a PDE

what is an "optimal solver"?

multigric

barriers & extensions to optimality

define "optimal"

- consider N equations in N unknowns: $\mathbf{F}(\mathbf{u}) = 0$
 - \circ residual $\mathbf{F}:\mathbb{R}^N o\mathbb{R}^N$ is generally nonlinear
 - \circ $\mathbf{F}(\mathbf{w}) = \mathbf{b} A\mathbf{w}$ in the linear case

definition. an algorithm which solves $\mathbf{F}(\mathbf{u})=0$ in O(N) work, as $N\to\infty$, is *optimal*

 if you have ever tried solving big, nontrivially-coupled systems of equations, you'll conclude optimality is generally hopeless

slide full of caveats

in the definition "an algorithm which solves $\mathbf{F}(\mathbf{u})=0$ in O(N) work, as $N\to\infty$, is *optimal*":

- "solves" means: generates \mathbf{u}_n so that $\frac{\|\mathbf{F}(\mathbf{u}_n)\|}{\|\mathbf{F}(\mathbf{u}_0)\|} \leq \mathsf{tol}$
 - \circ where \mathbf{u}_0 is an initial guess
 - o in linear case $A\mathbf{u}=\mathbf{b}$, given any rounding error, only $O(\kappa(A)\epsilon_{\mathsf{mach}})$ accuracy is possible anyway¹
- "O(N)" hides constant; may depend on tol but not on N
- "work" = (count of floating point operations)
 - o or runtime, but timing on modern computers is really messy
- " $N \to \infty$ " limit is notional only
 - real computers run out of memory
 - o optimal algorithms are often memory-limited (that's a feature)

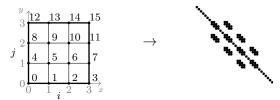
¹for students of MATH 614

example: tridiagonal matrices

- an easy example of optimality
- Gauss elimination solves $A{f u}={f b}$ in 8N-6=O(N) flops o need to avoid pivoting
- for SPD tridiagonal matrices, use Cholesky decomposition, again ${\cal O}(N)$
- the 1D Poisson problem -u''=f, and generally all ODE BVPs, have optimal solution methods

non-example: banded direct methods in 2D,3D

- for structured-grid FDM method on PDEs in 2D and 3D the bandwidth of A grows as $N\to\infty$
- for example, for MSE on $\Omega = [0,1] \times [0,1]$:



- if bandwidth p then Cholesky does $O(Np^2)$ work
- thus for direct methods for PDE problems on structured grids with m points in each direction:
 - $\circ \ N=m^2$ and p=m so $O(N^2)$ work in 2D
 - $N=m^3$ and $p=m^2$ so $O(N^{7/3})$ work in 3D
- variable reordering like "minimum degree" helps . . . but not enough

sparse matrices from PDEs have O(N) mat-vec

- if
- $\circ \ A \in \mathbb{R}^{N \times N}$ is sparse, with
- \circ number of nonzeros per row bounded independent of N then the work of computing $A\mathbf{v}$ is O(N)
- ullet computing $A{f v}$ is called a "mat-vec"
- condition is automatic for structured grids and any F ^D_F M
- for typical FEM on an unstructured mesh,

(nonzeros in row
$$j$$
 of $A) = \mathrm{degree}(\mathsf{node}\ j) + 1$ so cost of $A\mathbf{v}$ is $O((\max \mathrm{degree})N)$

Krylov methods

- for most numerical analysts of the 1980s and 1990s, "sparse mat-vecs are ${\cal O}(N)$ " was the new hope
- because naval engineer A. Krylov (1931) observed that the solution to $A{\bf u}={\bf b}$ may be well-approximated by ${\bf v}$ in

$$\mathcal{K}_m(A, \mathbf{b}) = \operatorname{span}\left\{\mathbf{b}, A\mathbf{b}, A^2\mathbf{b}, \dots, A^m\mathbf{b}\right\}$$

- o computing $\mathbf{v} \in \mathcal{K}_m(A, \mathbf{b})$ costs O(mN)
- $\circ \mathbf{v} \in \mathcal{K}_m(A, \mathbf{b}) \iff \mathbf{v} = p_m(A)\mathbf{b}$
- to solve $A\mathbf{u} = \mathbf{b}$ we want $\mathbf{u} = A^{-1}\mathbf{b} \approx p_m(A)\mathbf{b}$

conjugate gradients

- example: conjugate gradients (CG) is a Krylov method
 - \circ A must be SPD
 - \circ CG generates the "best" iterates \mathbf{u}_m from a Krylov space
 - ullet the error ${f e}_m={f u}_m-{f u}$ is minimal in norm $\|\cdot\|_A$
 - work per CG iteration is O(N)
 - thus work is O(mN) for m iterations
- if $\kappa = \kappa_2(A)$ is the condition number of A then

$$\frac{\|\mathbf{e}_m\|_A}{\|\mathbf{e}_0\|_A} \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^m$$

• it follows that $m = O(\sqrt{\kappa})$ iterations are needed

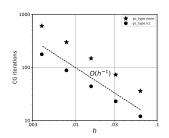
CG iterations increase with N

 \bullet unfortunately, if A is from FDM applied to the Poisson equation then

$$\kappa_2(A) = O(h^{-2})$$

- the number of CG iterations m increases with $N=O(h^{-d})$

 - $\begin{array}{c} \circ \ \ m = O(N^{1/3}) \ {\rm in} \ {\rm 3D} \\ \Longrightarrow \ O(N^{4/3}) \ {\rm solver} \end{array}$



- other Krylov methods are similar
- · general reminder:

a Krylov method can only be optimal if the number of iterations m is bounded independently of N

preconditioning

- by \sim 1995 it was clear that Krylov methods by themselves were not the answer for solving big PDE problems
- but you don't have to accept the given system $A\mathbf{u} = \mathbf{b}$
- definition. given invertible M,
 - $\circ \ (M^{-1}A){f u}=M^{-1}{f b}$ is the *left-preconditioned* system
 - $\circ \ (AM^{-1})M{f u}={f b}$ is the *right-preconditioned* system
- new condition numbers $\kappa_2(M^{-1}A)$ or $\kappa_2(AM^{-1})$ can be much smaller
- " M^{-1} " must be a cheap method for this to help
 - e.g. Meijerink & van der Vorst (1977): incomplete LU and Cholesky factorizations

where we stand: an optimality lemma

• *lemma*. as $N \to \infty$, if $A \in \mathbb{R}^{N \times N}$ is SPD and if a symmetric preconditioning method produces bounded condition numbers,

$$\kappa_2(M^{-1}A) \leq B,$$

where B>0 is independent of N, then preconditioned CG is an optimal solver

- optimality goal: find preconditioners which make $\kappa_2(M^{-1}A)$ bounded independent of N
- multigrid is such a preconditioner

Outline

how to approximately solve a PDE

what is an "optimal solver"?

multigrid

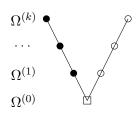
barriers & extensions to optimality

multigrid: what it does

- given sequence of grids $\{\Omega^{(j)}\}_0^k$
- $\Omega^{(0)}$ $\Omega^{(1)}$

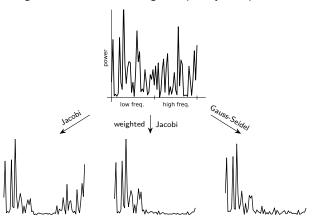
• given initial guess ${\bf w}$ on the finest grid $\Omega^{(k)}$, a multigrid cycle (e.g. a "V cycle") approximately solves $A{\bf u}={\bf b}$

```
 \begin{aligned} & \textbf{function} \ \text{VCYCLE}(A, \mathbf{b}, \mathbf{w}, l) \\ & \textbf{if} \ l == 0 \ \textbf{then} \\ & \text{solve} \ A \mathbf{v} = \mathbf{b}, \ \textbf{e.g.} \ \textbf{by a direct solver} \\ & \textbf{else} \\ & \text{improve } \mathbf{w} \ \textbf{on the level} \ l \ \textbf{grid} \\ & \mathbf{r}^C = \left( \text{restrict} \ \mathbf{r} = \mathbf{b} - A \mathbf{w} \ \textbf{to} \ \Omega^{(l-1)} \right) \\ & \mathbf{z}^C = \text{VCYCLE}(A^C, \mathbf{r}^C, \mathbf{0}, l - 1) \\ & \mathbf{v} \leftarrow \mathbf{v} + \left( \text{interpolate} \ \mathbf{z}^C \ \textbf{to} \ \Omega^{(l)} \right) \\ & \text{improve} \ \mathbf{v} \ \text{some more on the level} \ l \ \textbf{grid} \\ & \textbf{return} \ \mathbf{v} \end{aligned}
```



multigrid uses cheap smoothers

- question: what does "improve w on the level l grid" mean?
 answer: smoothing
- many classical linear iterations are smoothing
 - $\circ\,$ e.g. weighted Jacobi and Gauss-Seidel using A
 - fast O(N) operations
 - o single iteration reduces high-frequency components of the error



multigrid: why it is O(N)

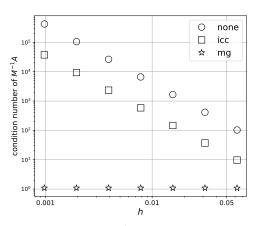
- multigrid is a systematic way of combining two actions
 - o smoothing: filter out high frequencies of the error on your grid
 - coarsening: transfer to an easier grid
 - frequencies that were "medium-low" are now "high"
- restricting and interpolating on $\Omega^{(l)}$ is $O(N_l)$
- ullet a single step of the smoother on $\Omega^{(l)}$ is $O(N_l)$
- ullet thus total work on $\Omega^{(l)}$ is CN_l for fixed C
- then the total work of a V-cycle is a finite geometric series:

$$\begin{split} &(\Omega^{(k)} \text{ work}) + (\Omega^{(k-1)} \text{ work}) + \dots + (\Omega^{(1)} \text{ work}) + (\Omega^{(0)} \text{ work}) \\ &= CN_k + CN_{k-1} + \dots + CN_1 + C_0 \\ &= CN_k + C\frac{N_k}{2^d} + \dots + C\left(\frac{1}{2^d}\right)^{k-1} N_k + C_0 \\ &\leq 2CN_k + C_0 \end{split}$$

o re the coarsest grid \dots who cares! $\dots C_0$ is independent of N

multigrid on Poisson

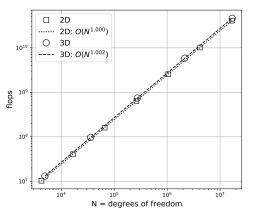
 \bullet V-cycle-preconditioned CG iterations on $\Omega=[0,1]^2$ Poisson



values of $\kappa_2(M^{-1}A)$ for 2D problem

multigrid on Poisson: evidence of optimality

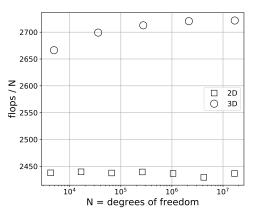
 \bullet V-cycle-preconditioned CG iterations on $\Omega = [0,1]^d$ Poisson



direct demonstration of $\mathcal{O}(N)$ work

multigrid on Poisson: evidence of optimality

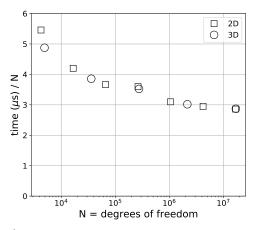
 \bullet V-cycle-preconditioned CG iterations on $\Omega = [0,1]^d$ Poisson



i.e. constant amount of work per degree of freedom

multigrid on Poisson: evidence of optimality

• V-cycle-preconditioned CG iterations on $\Omega = [0,1]^d$ Poisson



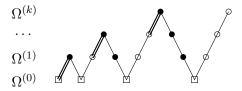
(almost) constant amount of time per degree of freedom

multigrid on MSE

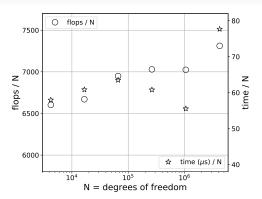
• recall the nonlinear MSE problem on $\Omega = [0,1]^2$:

$$-\nabla \cdot \left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = 0 \qquad \text{ with } u\big|_{\partial\Omega} = g.$$

- solved by Newton iteration
- o how to find a convergent initial iterate on a fine grid?
- multigrid solution is by nonlinear "F-cycle"
 - o a.k.a. nested iteration with V-cycles
 - \circ start on coarse grid $\Omega^{(0)}$
 - interpolating upward supplies good initial iterate



multigrid on MSE: evidence of optimality



• on finest 2049×2049 grid with $N = 4 \times 10^6$:

total flops =
$$N\left(\frac{\mathrm{flops}}{N}\right) = (4\times10^6)(7\times10^3) \approx 3\times10^{10}$$

runtime about 5 minutes total

algebraic multigrid

- what about multigrid on unstructured grids?
 - o remember the snowflake?
 - for "geometric" multigrid (used so far) one need subgrids and grid-based restriction and interpolation operations
- ullet new idea ${\sim}1985$ is algebraic multigrid
 - \circ can be applied to any linear system $A\mathbf{u} = \mathbf{b}$
 - \circ extracts analogs of "subgrid" and "smoother" and "interpolation" from A itself
 - o ... but tends to need elliptic PDEish properties to actually work
 - o active research area for e.g. spectral graph theory
 - \circ by a new generation of applied mathematicians

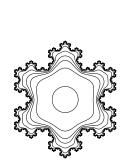
algebraic multigrid

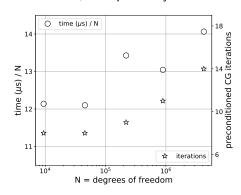
- what about multigrid on unstructured grids?
 - o remember the snowflake?
 - for "geometric" multigrid (used so far) one need subgrids and grid-based restriction and interpolation operations
- new idea ∼1985 is algebraic multigrid
 - \circ can be applied to *any* linear system $A\mathbf{u} = \mathbf{b}$
 - \circ extracts analogs of "subgrid" and "smoother" and "interpolation" from A itself
 - ... but tends to need elliptic PDEish properties to actually work
 - o active research area for e.g. spectral graph theory
 - by a new generation of applied mathematicians

algebraic multigrid: evidence of (near-)optimality

 recall unstructured mesh on a snowflake polygon; level 2 at right

- generate level 5,6,7,8,9 approximations of the Koch fractal
- mesh them
- and test algebraic-multigrid-preconditioned CG method, on the Poisson equation $-\nabla^2 u = 1$, for optimality





wider applicability of multigrid

- multigrid was invented for Poisson and linear elliptic equations by Federenko (1962, 1964)
- but there was a period of darkness
- by 1980 or so optimism about multigrid was limited to one mathematician: Achi Brandt
 - a creator of algebraic multigrid,
 - and of a fully-nonlinear multigrid, the full approximation scheme (not covered here),
 - who started calling optimality "textbook multigrid efficiency," which isn't really helping
- since then, multigrid has succeeded on more and more applications
 - example: Brown et al. (2013), Achieving textbook multigrid efficiency for hydrostatic ice flow

Achi Brandt is my hero

Jed Brown, UAF MS 2006

Outline

how to approximately solve a PDE

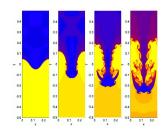
what is an "optimal solver"?

multigrid

barriers & extensions to optimality

low regularity of solution

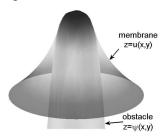
- multigrid is not always easy to make optimal
- consider nonlinear PDE BVP
 - o or a PDE system like Stokes flow
 - or an implicit time step of Navier-Stokes



- try Newton-multigrid method
 - as we did with MSE
- problem: often # of Newton steps and Krylov steps grows as $h \to 0$ because of large gradients in the solution
- can demonstrate this with MSE for nonsmooth boundary conditions
 - o not shown
 - Brandt suggests: combine multigrid & AMR

constrained problems

- other problems are not quite PDEs because they have inequality constraints
- causes two difficulties for Newton-multigrid methods:
 - 1. a free boundary implies low regularity (last slide)
 - 2. # of Newton steps is proportional to D/h where D is distance-to-move free boundary (from initial iterate)
- but there's another Brandt invention: projected full approximation scheme, a fully-nonlinear and constraint-adapted multigrid
- Max H. is working on it



numerical convergence, and spectral methods

- for a PDE BVP, as $h \to 0$ and $N \to \infty$ we first want convergence to the continuum solution
 - I have been assuming that our methods are convergent!
- spectral methods get very close to the continuum solution for very small Ncompared to FPM
 - if the geometry is simple (rectangle)
 - and the solution is smooth
- often A is dense
- \bullet but with such a spectral method, even $O(N^3)$ solution of the discrete equations is often acceptable because N is small
- recalling these things shows that optimality is not the only good goal

- for all DE problems, one needs to define N, the number of discrete degrees of freedom, before we can talk optimality
- ODE IVP
 - $\quad \text{o for } y' = f(t,y) \text{ and } y(t) \in \mathbb{R}^q$
 - $\circ~$ on [0,T] with Δt spacing in time
 - o define:

$$N := \frac{T}{\Delta t} \, q$$

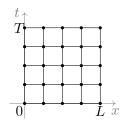
 \circ with this N, all ODE IVP methods are already optimal

- for all DE problems, one needs to define N, the number of discrete degrees of freedom, before we can talk optimality
- ODE IVP already optimal ✓
- ODE BVP
 - F D M generate tridiagonal systems
 - already optimal

- for all DE problems, one needs to define N, the number of discrete degrees of freedom, before we can talk optimality
- ODE IVP
- ODE BVP
- hyperbolic PDE IBVP
 - o for example, wave equation with reaction: $u_t + a(u) \cdot \nabla u = f(u)$
 - \circ F $_{
 m V}^{
 m D}$ Ms normally use explicit, CFL-limited time steps Δt
 - o if we define $N=\frac{T}{\Delta t}\,\frac{L}{\Delta x}$, these methods are already optimal

already optimal ✓

already optimal ✓

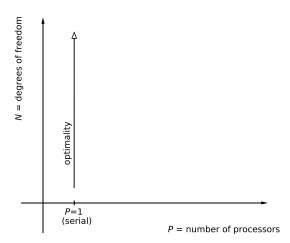


- ullet for all DE problems, one needs to define N, the number of discrete degrees of freedom, before we can talk optimality
- ODE IVP
- ODE BVP
- hyperbolic PDE IBVP
- PDE BVP
- other PDE IBVP

- already optimal ✓
- already optimal ✓
- already optimal ✓
- optimal requires effort
- optimal requires effort
- o for example, advection-diffusion-reaction equation with reaction: $u_t + a(u) \cdot \nabla u = \nabla \cdot (D\nabla u) + f(u)$

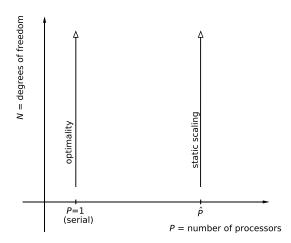
conflicting goal: parallel scaling

- sometimes you have a big machine with \hat{P} processors
 - everything so far has been serial (P=1)
 - o on graph below, runtime is third axis



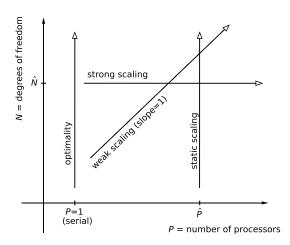
conflicting goal: parallel scaling

- sometimes you have a big machine with \hat{P} processors
 - \circ everything so far has been serial (P=1)
 - o on graph below, runtime is third axis



conflicting goal: parallel scaling

- sometimes you have a big machine with \hat{P} processors
 - \circ everything so far has been serial (P=1)
 - o on graph below, runtime is third axis



conclusion

 in approximately solving your well-behaved PDE-type problem on a modern computer,

you should be solving the N equations in O(N) work

as you head toward $N=\infty$ unknowns

- this is a good goal for PDE BVPs
- to achieve it you must exploit
 - o the locality (sparsity) of the problem, and
 - correlation (smoothness) of the solution
- multigrid is the only real hope!?
- talk to me about PETSc ... I am writing a book about that

conclusion

 in approximately solving your well-behaved PDE-type problem on a modern computer,

you should be solving the N equations in O(N) work

as you head toward $N=\infty$ unknowns

- this is a good goal² for PDE BVPs
- to achieve it you must exploit
 - o the locality (sparsity) of the problem, and
 - o correlation (smoothness) of the solution
- multigrid is the only real hope!?
- talk to me about PETSc ... I am writing a book about that

 $^{^2 {\}rm for\ dense\ systems\ } A{\bf u}={\bf b} \ {\rm the\ goal\ is\ } O(N^2)$. . . an open problem