Weak and shallow: New thinking about simulations of ice sheet flows

Ed Bueler

Dept of Mathematics and Statistics and Geophysical Institute University of Alaska Fairbanks

27 October, 2012

supported by NASA grant NNX09AJ38C

weak, shallow, and fairly new

- C. Schoof (2006) A variational approach to ice stream flow,
 J. Fluid Mech. 556, 227–251
- E. Bueler, J. Brown (2009) Shallow shelf approximation as a "sliding law" in a thermodynamically coupled ice sheet model, J. Geophys. Res. 114, F03008
- G. Jouvet, E. Bueler (2012) Steady, shallow ice sheets as obstacle problems: well-posedness and finite element approximation, SIAM J. Appl. Math. 72 (4), 1292–1314
- G. Jouvet, E. Bueler, C. Gräser, R. Kornhuber (to appear) A nonsmooth Newton multigrid method for a hybrid, shallow model of marine ice sheets, Proc. 8th ICSCA, AMS Cont. Math.
- G. Jouvet = Guillaume Jouvet, Free University of Berlin

Outline

ice sheet flow: an introduction for non-glaciologists shallow ice approximation for grounded ice sheets a model for ice streaming a model for marine ice sheet evolution

Outline

ice sheet flow: an introduction for non-glaciologists

ice in glaciers is a viscous fluid

- ... at least: glaciers are viscous flows at larger scales
- usage: "ice sheets" are big, shallow glaciers

ice in glaciers is a viscous fluid

- primary variables: velocity $\mathbf{u}(\mathbf{x},t)$ and pressure $p(\mathbf{x},t)$
- also: ρ is density, ${\bf g}$ is gravity, ν is viscosity
- if the glacier fluid were "typical" like the ocean we would model with Navier-Stokes equations:

$$\begin{aligned} \nabla \cdot \mathbf{u} &= 0 & \textit{incompressibility} \\ \rho \left(\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} \right) &= -\nabla p + \nu \nabla^2 \mathbf{u} + \rho \mathbf{g} & \textit{stress balance} \end{aligned}$$

- but ice is not typical!
- e.g. not addressed in ice sheet flow models:
 - turbulence
 - convection
 - coriolis force
 - density-driven flow

ice is a slow, shear-thinning viscous fluid

- · our glacier fluid is
 - 1. "slow"1:

$$\rho\left(\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u}\right) \approx 0 \qquad \Longleftrightarrow \qquad \begin{pmatrix} \text{forces of inertia} \\ \text{are negligible} \end{pmatrix}$$

2. non-Newtonian (shear-thinning):

viscosity ν is not constant

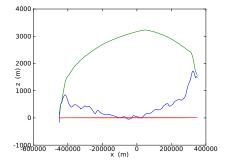
- notation:
 - o τ_{ij} is deviatoric stress tensor
 - o $\mathbf{D}u_{ij}$ is strain rate tensor
- the standard ice flow model is Glen-law Stokes:

$$abla \cdot \mathbf{u} = 0$$
 incompressibility $0 = -\nabla p + \nabla \cdot au_{ij} + \rho \mathbf{g}$ slow stress balance $\mathbf{D} u_{ij} = A \left| au_{ij} \right|^{n-1} au_{ij}$ Glen flow law

- 1.8 < n < 4.0 ? when in doubt: n = 3
- *A* > 0 is "ice softness"

but ice sheets are shallow

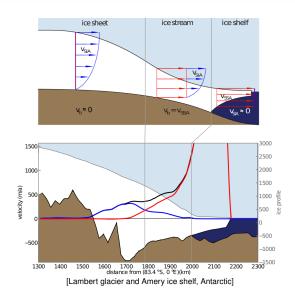
- consider cross section of Greenland ice sheet at 71° N
 - o green and blue: usual vertically-exaggerated version



- in red: a view without this vertical exaggeration
- thus:
 - most simulations use shallow limits of Stokes
 - high aspect-ratio elements endanger Stokes solvers

sheets versus streams versus shelves

- non-sliding portions of ice sheets flow by shear deformation
- ice streams slide
- "ice shelves" are floating thick ice
- ice shelves flow by extension
 - "membrane" or "plug" flow
- "SIA" and "SSA" will be explained later

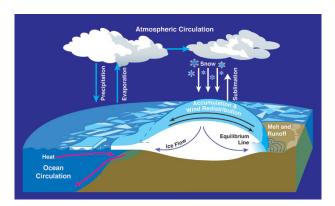


summary so far

- ice sheets have four outstanding properties as viscous flows:
 - 1. slow
 - 2. shear-thinning
 - 3. shallow
 - 4. contact slip

big picture: ice sheet flow affects sea level

- mass and energy inputs: (1) snow adds, (2) sun heats, (3) ocean heats, (4) earth heats
- mass outputs: (1) surface meltwater, (2) basal meltwater, (3) ice discharge



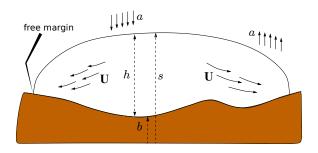
Outline

ice sheet flow: an introduction for non-glaciologists

shallow ice approximation for grounded ice sheets

a model for ice streaming

a model for marine ice sheet evolution



- a(t, x, y, z) =yearly-average mass balance
- b(x,y) = bedrock elevation
- s(t, x, y) = ice surface elevation
- h(t, x, y) = ice thickness = s b
- $\mathbf{U}(t, x, y, z) = \text{horizontal velocity field}$

key idea: ice surface s is always above the bedrock b

- SIA = lubrication approximation of Stokes model
- good approximation when:
 - sliding is small or zero
 - bedrock slope is modest
- derive SIA equations by scaling Stokes:
 - o [h] is a typical thickness scale
 - [x] is a typical width scale
 - o small parameter is $\epsilon = [h]/[x]$

- at right is the Halfar similarity solution
- an exact, time-dependent, zero mass balance solution where the $t \rightarrow 0^+$ limit is a delta function
- compare Barenblatt solution of porous medium equation

frames from t=4 months to $t=10^6$ years, equal spaced in *exponential* time

- let p = n + 1 > 2
- assume: no sliding and isothermal
- horizontal ice velocity is given by:

$$\mathbf{U} = -\frac{2A}{p}(\rho g)^{p-1} \left[(s-b)^p - (s-z)^p \right] |\nabla s|^{p-2} \nabla s$$

no PDE needs to be solved to compute velocity!

mass conservation in steady state:

$$\nabla \cdot \left(\int_b^s \mathbf{U} \, dz \right) = a$$

shallow ice approximation + (steady) mass conservation:

$$-\nabla \cdot \left(\Gamma(s-b)^{p+1}|\nabla s|^{p-2}\nabla s\right) = a$$

- this is the major SIA equation (... a PDE?)
- computes ice surface s
- constant $\Gamma > 0$ combines ρ, g, A, p
- o p-Laplacish ... but coefficient $(s-b)^{p+1} \to 0$ at margins

• using the change of variable $u=h^{\frac{2p}{p-1}}$, the steady SIA equation is:

$$-\nabla \cdot (\mu |\nabla u - \Phi(u)|^{p-2} (\nabla u - \Phi(u))) = \alpha(u)$$

where

- \circ $\mu > 0$ is constant (isothermal case)
- $\Phi(u) = -C\,u^{rac{p+1}{2p}}
 abla b$ is transformed bedrock topography
- $\circ \ \alpha(u) = a(x,y,z = u^{rac{p-1}{2p}})$ is transformed mass balance
- ullet a generalized p-Laplace equation with added nonlinearities
- change of vars means uniform p-ellipticity recovered, but at cost of "tilt" $(\nabla u \Phi(u))$

- issue: SIA equation applies only on domain where $s > b \iff h > 0$
- the change $h \to u$ transforms constraint $s \ge b$ into $u \ge 0$
- define convex constraint set

$$\mathcal{K} := \{ v \in W_0^{1,p}(\Omega), v \ge 0 \}$$

definition

 $u \in \mathcal{K}$ solves the *steady shallow ice sheet problem* if

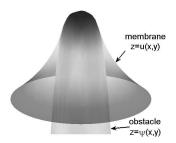
$$\int_{\Omega} (\mu |\nabla u - \Phi(u)|^{p-2} (\nabla u - \Phi(u))) \cdot \nabla (v - u) \ge \int_{\Omega} \alpha(u) (v - u)$$

for all $v \in \mathcal{K}$

(Jouvet-Bueler 2012)

SIA: an analogy

- ice sheet surface= membrane
- bedrock = obstacle



(easy) theorem

if α,Φ were independent of u then the variational inequality is equivalent to:

$$u \text{ minimizes} \qquad J(v) = \frac{\mu}{p} \int_{\Omega} |\nabla v - \Phi|^p - \int_{\Omega} \alpha v$$

over $v \in \mathcal{K}$; this admits a unique solution

(Jouvet-Bueler 2012)

- gives ice sheet existence and uniqueness only if
 - o bedrock is flat ($\Phi = 0$) and
 - o mass balance is elevation-independent (a = a(x, y))
- but otherwise: α, Φ are not independent of u

- p>2 so $W^{1,p}_0(\Omega)\hookrightarrow C(\overline{\Omega})$
- define map $\mathcal{A}:C(\overline{\Omega})\to C(\overline{\Omega})$, which takes w to the unique u solving (over $v\in\mathcal{K}$)

$$\int_{\Omega} \mu \left(|\nabla u - \Phi(w)|^{p-2} (\nabla u - \Phi(w)) \right) \cdot \nabla(v - u) \ge \int_{\Omega} \alpha(w) (v - u)$$

result

the map A admits at least one fixed point

(Jouvet-Bueler 2012)

sketch of proof:

- A is continuous and compact
- the set $\{w\in C(\overline{\Omega}), \exists \lambda\in [0,1] \text{ so that } w=\lambda \mathcal{A}(w)\}$ is bounded
- Schaefer's fixed point theorem

- given bedrock topography b(x, y)
- given mass-balance a(x, y) (steady climate)
- set $u_0 = 0$
- do fixed point iterations for $u_{k+1} \in \mathcal{K}$:

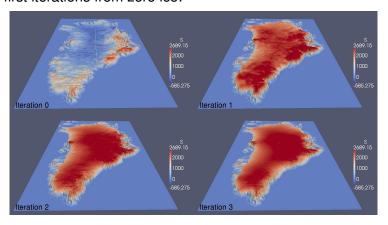
$$\int_{\Omega} \left(\mu |\nabla u_{k+1} - \Phi(u_k)|^{p-2} (\nabla u_{k+1} - \Phi(u_k)) \right) \cdot \nabla(v - u_{k+1})$$

$$\geq \int_{\Omega} \alpha(v - u_{k+1})$$

computes: steady state ice sheet shape

example: steady ice sheet on Greenland bedrock

first iterations from zero ice:



 as far as we can tell: this 2011 computation was the first of the steady state of a real ice sheet without time-stepping

Outline

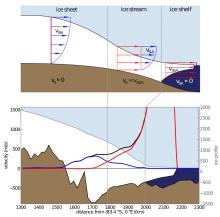
ice sheet flow: an introduction for non-glaciologists shallow ice approximation for grounded ice sheets

a model for ice streaming

a model for marine ice sheet evolution

shallow shelf approximation (SSA): a "definition"

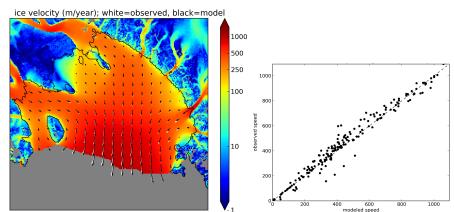
- SSA = "membrane" or "plug" flow approximation of Stokes
- a good approximation when there is low basal resistance and minimal basal topography
- a very good approximation for ice shelves (next slide)
- derived by scaling with $\epsilon = [h]/[x]$ and requirement that basal resistance is low (see Schoof (2006))



[Lambert glacier and Amery ice shelf. Antarctic]

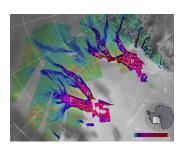
SSA works well for ice shelves

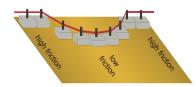
- Ross ice shelf (Antarctica) velocity below
 - observed versus computed by SSA model in PISM
 - \circ tuned: single, constant A



SSA for ice streams: an analogy

- ice shelves have zero basal resistance
- ice streams emerge where basal resistance is sufficiently low (top: Siple coast ice streams)
- a basal resistance model:
 - o "plastic" or Coulomb friction
 - \circ distribution of yield stress au_c
- ice membrane connects to upstream and/or lateral high friction with viscous stresses (bottom: Schoof's slider analogy)





- let $q=1+\frac{1}{n}$ and $B=A^{1-q}$
- suppose a basal yield stress distribution $\tau_c(x,y)$, zero on ice shelves
- $2 \| \mathbf{V} \|^2 := \sum_{i,j} (\mathbf{D} V_{ij})^2 + \sum_i (\mathbf{D} V_{ii})^2$
- F denotes lateral force along calving front

definition

the horizontal velocity $\mathbf{U} \in W^{1,q}(\Omega)$ solves the coulomb friction SSA if it minimizes

$$\mathcal{J}_{\mathrm{SSA}}(\mathbf{V}) = \int_{\Omega} \frac{2B}{q} h \, \|\!|\!| \mathbf{V} \|\!|\!|^q + \rho g h \nabla s \cdot \mathbf{V} + \tau_c |\mathbf{V}| - \int_{\partial \Omega} \mathbf{F} \cdot \mathbf{V}$$

SSA weak formulation is well-posed

Theorem

if $h \in L^\infty(\Omega)$ with $h \geq h_0 > 0$, and if $h|\nabla s| \in L^{q/(q-1)}(\Omega)$, and if $\tau_c \in L^{q/(q-1)}(\Omega)$, and as long as there is sufficient total basal resistance,* then the Coulomb friction SSA is well-posed problem for computing the velocity $\mathbf{U} \in W^{1,q}(\Omega)$ (Schoof, 2006)

• note: because \mathcal{J}_{SSA} is not differentiable, minimization on last slide is equivalent to a variational inequality but not to a PDE

*: To stop the ice sheet from sliding whole into the sea. There is a precise inequality.

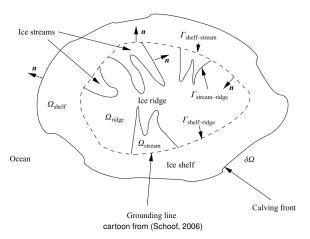
Outline

ice sheet flow: an introduction for non-glaciologists shallow ice approximation for grounded ice sheets a model for ice streaming

a model for marine ice sheet evolution

marine ice sheets

- · marine ice sheets have all modes of flow
- full of free boundaries
- the Antarctic ice sheet is the marine ice sheet



ice sheet geometry evolution: set-up

- recall $n \approx 3$ (i.e. n > 1):
 - o p = n + 1 > 2 is for SIA weak formulation
 - o define $r = \frac{p-1}{2p}$; SIA change of variables is $u = h^r$
 - $q = 1 + \frac{1}{n} < 2$ is for SSA weak formulation
- time-discretization t_k with spacing $\tau_k = t_{k+1} t_k$
- time-dependent mass conservation:

$$\frac{\partial h}{\partial t} + \nabla \cdot \left(\int_b^s \mathbf{U} \, dz \right) = a$$

we hybridize:

(Bueler & Brown, 2009)

$$U = U_{\text{SIA}} + U_{\text{SSA}}$$

1. find velocity $\mathbf{U}_k \in W^{1,q}(\Omega)$ that minimizes

$$\mathcal{J}_{\mathrm{SSA}}(\mathbf{V}) = \int_{\Omega} \frac{2B}{q} h_k \, \|\!|\!| \mathbf{V} \|\!|\!|^q + \rho g h_k \nabla s_k \cdot \mathbf{V} + \tau_c |\mathbf{V}| - \int_{\partial \Omega} \mathbf{F}_k \cdot \mathbf{V}$$

2. find $h_{k+\frac{1}{2}}$, the solution at t_{k+1} of the advection problem:

$$\begin{cases} \frac{\partial h}{\partial t} + \nabla \cdot (h \mathbf{U}_k) = 0, & t_k \le t \le t_{k+1}, \\ h(t_k) = h_k. \end{cases}$$

- 3. transform: $u_{k+\frac{1}{2}} = (h_{k+\frac{1}{2}})^{1/r}$
- 4. find thickness $h_{k+1} = u^r$, i.e. find $u \in \mathcal{K}$, that minimizes

$$\mathcal{J}_{\text{SIA}}(v) = \int_{\Omega} \frac{1}{(r+1)\tau_k} v^{r+1} + \frac{\mu}{p} |\nabla v - \Phi(u_{k+\frac{1}{2}})|^p - \left(\frac{1}{\tau_k} u_k^r + \alpha(u_{k+\frac{1}{2}})\right)^{-1} dv$$

5. repeat at 1.

(Jouvet et al. to appear)

moving grounding line movie

numerical solution of the weak formulations

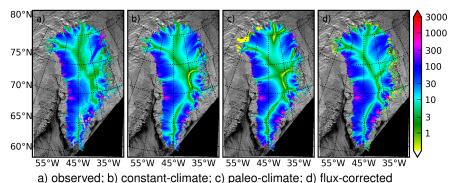
- the $W^{1,p}$ (SIA) and $W^{1,q}$ (SSA) solutions to these free boundary problems have low regularity
 - \circ so we use P_1 finite elements
 - $||u-u_{\mathsf{h}}||_{W^{1,p}} \leq C\mathsf{h}^{2/p}$: convergence is slow
- previous movie used:
 - Truncated Nonsmooth Newton MultiGrid (TNNMG) method for both \mathcal{J}_{SSA} and \mathcal{J}_{SIA} minimizations
 - implemented in DUNE (dune-project.org)

known concerns with algorithm

- \mathcal{J}_{SSA} needs regularization so that h_k is lower bounded
- advection scheme should maintain h > 0
 - o for now: first-order upwinding on advection problem
- · first-order time-splitting

results from PISM

- PISM = Parallel Ice Sheet Model (pism-docs.org)
- below are 2 km grid results for Greenland; everything evolves; only showing surface velocities
- PISM is "old technology": implements SIA+SSA hybrid but in strong form with ad hoc treatment of free boundaries



conclusion

some new thinking which is weak and shallow

- steady grounded ice sheets now have a (mostly) well-posed shallow, weak, obstacle-like formulation (SIA)
- sliding velocity computations are by a shallow weak formulation in which ice streams "emerge naturally" (SSA)
- both of above are generalizations of p-Laplace problems
- new marine ice sheet algorithm from time-splitting:
 - solve SSA weak form
 - advection with SSA velocity
 - o solve SIA+(mass conservation) obstacle problem

a quality of the SIA variational inequality

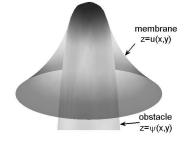
• every glaciologist believes this about steady climates:

if a > 0 on a sub-domain R then s > b on R

- that is:
 if it snows more than it melts then you get a glacier there
- uniformly-elliptic variational inequalities, e.g. the classical obstacle problem,

$$\int_{\Omega} \nabla u \cdot \nabla (v - u) \ge \int_{\Omega} f(v - u),$$

for all $v \ge \psi$, do *not* have the analogous property



on TNNMG

to minimize a constrained or non-differentiable functional \mathcal{J} :

- let I be the entire node index set, $\mathcal{I} = \mathcal{I}(v)$ the active set where v is away from the obstacle/non-differentiability
- let $\mathcal{F}: \mathbb{R}^I \to \mathbb{R}^I$ be a "nonlinear Gauss-Seidel smoother":
 - \circ gives correction that minimizes ${\mathcal J}$ at each node separately
 - can be inexact
 - \circ the active set ${\mathcal I}$ can change
- let ${\mathcal D}$ be the domain of ${\mathcal J}$ and ${\mathcal P}_{\mathcal D}$ be a projection onto ${\mathcal D}$
- then TNNMG generates sequence u^l by:

$$u^{l+\frac{1}{3}} = u^{l} + \mathcal{F}(u^{l}),$$

$$u^{l+\frac{2}{3}} = u^{l+\frac{1}{3}} - \left(\mathcal{J}''(u^{l+\frac{1}{3}})_{\mathcal{I},\mathcal{I}}\right)^{-1} \mathcal{J}'(u^{l+\frac{1}{3}})_{\mathcal{I}},$$

$$u^{l+1} = \operatorname{argmin}_{w,\rho \in [0,1]} \left\{ \mathcal{J}(w) \middle| w = \rho u^{l+\frac{1}{3}} + (1-\rho)\mathcal{P}_{\mathcal{D}}(u^{l+\frac{2}{3}}) \right\}$$