Implicit time-stepping for ice sheets

Ed Bueler

Dept of Mathematics and Statistics and Geophysical Institute University of Alaska Fairbanks

SIAM CSE 2 March, 2017

supported by NASA grant # NNX13AM16G

Outline

problem, goals, and models

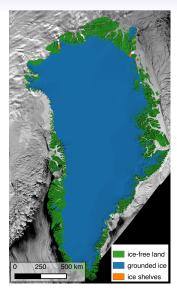
semi-discretizations

solving the equations for one time step

some early results

ice sheet flows and their boundaries

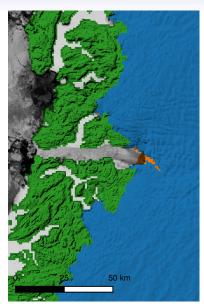
- nearly-fractal free boundaries
 - location determined by flow, topography, and atmosphere/ocean inputs
- large fraction of the boundary: grounded margins
- surface slope is discontinuous at grounded margins



PISM mask, by A. Aschwanden

ice sheet flows and their boundaries

- nearly-fractal free boundaries
 - location determined by flow, topography, and atmosphere/ocean inputs
- large fraction of the boundary: grounded margins
- surface slope is discontinuous at grounded margins



ice sheet flows and their boundaries

- nearly-fractal free boundaries
 - location determined by flow, topography, and atmosphere/ocean inputs
- large fraction of the boundary: grounded margins
- surface slope is discontinuous at grounded margins

Taku Glacier, Alaska, by M. Truffer

computational goal: long-time, high-res runs

my goal:

routinely simulate ice sheets on their natural time scales (ice age cycles $\gtrsim 10^5$ years) at resolutions where bedrock bumps, outlet glaciers, ice streams, and grounding lines are resolved ($\lesssim 500$ m)

- PISM (Parallel Ice Sheet Model) not there yet ... either long-time OR high-res
- some concerns:
 - 1. stress-balance solves expensive
 - o if time steps are short then stress balance is a lot of work
 - o ...energy conservation (temperature and basal melt) too!
 - 2. evolution of ice thickness H(t, x, y) is diffusive . . . thus stiff
 - o because ice flows downhill
 - 3. ice margins are low-regularity
 - 2 reasons: (i) constraint $H \ge 0$ and (ii) degeneracy
 - 4. bedrock is steep

a performance model

- grid spacing $h = \Delta x = \Delta y$ in 2D • (degrees of freedom) = $O(h^{-2})$
- time step limited by stability or accuracy:

$$\Delta t \leq O(h^q)$$

- $\circ q = 2$ for conditionally-stable explicit schemes on diffusions
- o accuracy alone suggests 0 < q < 1 ? . . . a scientific question?
- solution at one time step:
 - \circ N(h) Newton iterations
 - \circ K(h) (preconditioned) Krylov steps per Newton
- cost of computation on $\Omega \times [0,T]$:

$$\begin{split} C(h) &= (\mathsf{number\ of\ steps}) \cdot (\mathsf{iterations\ per\ step}) \cdot (\mathsf{cost\ of\ 1\ residual}) \\ &= O(h^{-q}) \cdot N(h) \cdot K(h) \cdot O(h^{-2}) \end{split}$$

• explicit: $C(h) = O(h^{-2}) \cdot 1 \cdot 1 \cdot O(h^{-2}) = O(h^{-4}) \leftarrow \text{beat this!}$

ice sheet models

- fixed computational domain $\Omega\subset\mathbb{R}^2$ where inputs b= (bed elevation) and m= (mass balance) are given
 - $\circ \ \Omega$ is only partly-covered by ice

• shallow, possibly-hybrid, thickness-based
$$H$$
, $\mathbf{u} = (u, v)$

$$H_t + \nabla \cdot (-D\nabla H + \overline{\mathbf{u}}H) = m(x,t)$$
 mass conservation $\mathcal{L}(\mathbf{u},H) = 0$ shallow stress balance

also: Stokes, surface-elevation-based

$$s, \mathbf{u} = (u, v, w)$$

$$s_t + \mathbf{u}\big|_s \cdot (s_x, s_y, -1) = m(x, t)$$
 surface kinematical
$$\nabla \cdot \mathbf{u} = 0$$
 incompressibility
$$\mathcal{L}(\mathbf{u}, s) = 0$$
 Stokes stress balance

- notation & assumptions:
 - \circ H thickness, s surface elevation, ${f u}$ velocity
 - $\circ D = D(H, |\nabla s|)$ is SIA diffusivity (nonlinear & degenerate)
 - conservation of energy ignored for simplicity
 - Eulerian, fixed grid (structured or not)

semi-discretize in space

- method of lines (MOL)
 - o can you hand the thing to an ODE solver?
- well-known: MOL for slow fluids is a DAE problem

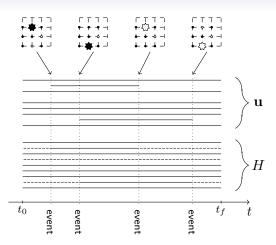
$$\dot{H} = f(H, \mathbf{u}, t)$$
 mass conservation
$$0 = g(H, \mathbf{u})$$
 momentum conservation

- isn't implicit time-stepping required for DAEs anyway?
- velocity variables only exist at positive-thickness locations i:

$$\mathbf{u}_i$$
 exists \iff $H_i > 0$

- thus ODE solver must handle events like these?:
 - o ice disappears during time step: $H_i(t) > 0 \rightarrow H_i(t + \Delta t) = 0$
 - \circ ice appears during time step: $H_i(t) = 0 \rightarrow H_i(t + \Delta t) > 0$

MOL+events cannot scale



- at each event the ice velocity dimension changes
- ice sheet margins nearly fractal, so a lot of events to handle
- re-meshing at every event probably won't scale

semi-discretize in time

- semi-discretize in time for understanding
- consider a single backward Euler time-step
 - o better time-stepping later
- hybrid equations become (notation: $H = H_{\text{new}}, \mathbf{u} = \mathbf{u}_{\text{new}}$):

$$H - H_{\text{old}} + \Delta t \nabla \cdot (-D\nabla H + \mathbf{u}H) = \Delta t m$$
$$\mathcal{L}(\mathbf{u}, H) = 0$$

single time-step problem for mass conservation

• solve for H subject to $H \ge 0$:

$$H - H_{\text{old}} + \Delta t \, \nabla \cdot \mathbf{q} = \Delta t \, m$$

- where $\mathbf{q} = -D\nabla H + \mathbf{u}H$ • note: $D = D(H, |\nabla s|) \to 0$ at margins
- make rigorous two ways:
- variational inequality (VI)

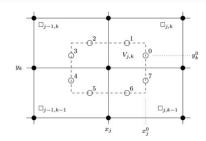
$$\int_{\Omega} (H - H_{\text{old}} - \Delta t \, m)(\eta - H) - \Delta t \, \mathbf{q} \cdot \nabla(\eta - H) \ge 0, \quad \forall \eta \ge 0$$

nonlinear complementarity problem (NCP)

$$F(H) = H - H_{\text{old}} + \Delta t \, \nabla \cdot \mathbf{q} - \Delta t \, m \ge 0$$
$$H \ge 0$$
$$HF(H) = 0$$

solving the equations

- · discretize in space:
 - \circ e.g. $M^{\star}=(Q^{1} \text{ elements and } finite volume weak form "\int_{V} ") Bueler 2016



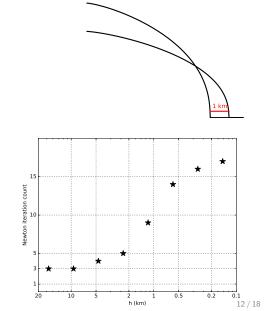
- wrote small PETSc code for mass conservation problem:
 - \circ MOL using M^*
 - tells TS object which part is stiff: $F(H_t, H) = G(t, H)$
 - $F = H_t + \nabla \cdot \mathbf{q}$ and G = m
 - allows any implicit or IMEX time-stepping
- equations at each time step are solved with
 - NCP-adapted ("reduced-space" or "semi-smooth") Newton
 - * -snes_type vinewton{rs|ss}ls

Benson & Munson 2006

+ Krylov solver + preconditioning

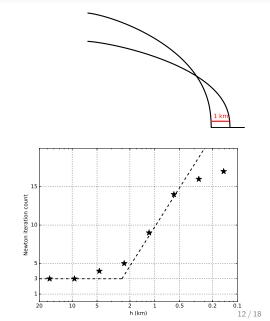
margin advance experiment: Newton iterations

- consider a single 10-year beuler time step
- of a Greenland-sized radial ice sheet
 - flat bed, m=0
 - o margin advance 975 m
- reduced-space Newton solver sees Jacobian in inactive variables only
 - states are admissible
 - dimension changes at each Newton step
- on fine grids ($\lesssim 1~{\rm km}$) the number of Newton iterations is proportional to margin motion divided by Δx



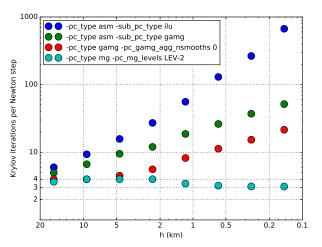
margin advance experiment: Newton iterations

- consider a single 10-year beuler time step
- of a Greenland-sized radial ice sheet
 - flat bed, m=0
 - o margin advance 975 m
- reduced-space Newton solver sees Jacobian in inactive variables only
 - states are admissible
 - dimension changes at each Newton step
- on fine grids ($\lesssim 1~{\rm km}$) the number of Newton iterations is proportional to margin motion divided by Δx



margin advance experiment: preconditioners

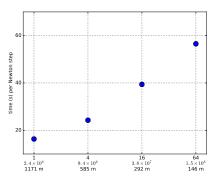
- fixed MPI rank = 64
- compare preconditioners:
 -snes_type vinewtonrsls -ksp_type gmres -pc_type X
- Krylov iterations per Newton step:



margin advance experiment: weak scaling?

- very preliminary weak-scaling evidence
 - \circ ranks 1, 4, 16, 64
 - fixed d.o.f. per process: 2.4×10^6
 - o -pc_type mg
- time per Newton step:

... should be flat!

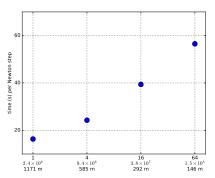


• the good news: $\Delta t/\Delta t_{FE}=9\times 10^4$ on finest grid

margin advance experiment: weak scaling?

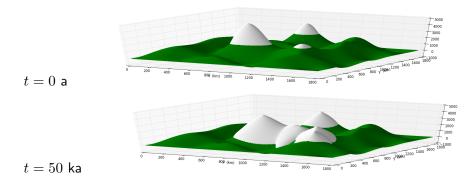
- very preliminary weak-scaling evidence
 - \circ ranks 1, 4, 16, 64
 - fixed d.o.f. per process: 2.4×10^6
 - o -pc_type mg
- time per Newton step:

... should be flat!



• the good news: $\Delta t/\Delta t_{FE}=9\times 10^4$ on finest grid

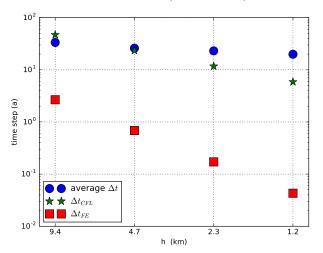
example: 50ka run with topography and sliding



- solve: $H_t + \nabla \cdot \mathbf{q} = m$ where $\mathbf{q} = -D\nabla H + \mathbf{u}H$
 - imposed "sliding" $\mathbf{u}(x,y)$
 - \circ elevation-dependent accumulation/ablation m=m(s)

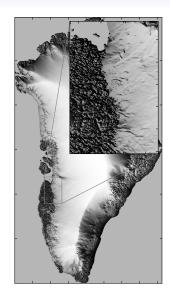
50ka run: time-stepping performance

- ARKIMEX(3): adaptive Runge-Kutta implicit/explicit 3rd-order (3 stage) time-stepping
- at least three nonlinear solves per time step



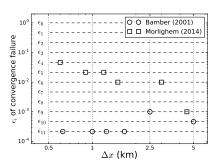
example: Greenland ice sheet $\Delta t = \infty$

- steady geometry H(x,y) of the Greenland ice sheet
 - o given m(x,y) and b(x,y)
- Bueler 2016, J. Glaciol.
- one $\Delta t = \infty$ step
 - o 900 m structured grid
 - \circ 7 × 10⁶ d.o.f.
- but Newton convergence suffers from bed roughness



example: Greenland ice sheet $\Delta t = \infty$

- steady geometry H(x,y) of the Greenland ice sheet
 - o given m(x,y) and b(x,y)
- Bueler 2016, J. Glaciol.
- one $\Delta t = \infty$ step
 - o 900 m structured grid
 - $\sim 7 \times 10^6$ d.o.f.
- but Newton convergence suffers from bed roughness



summary

- recommendations for implicit time-stepping of thickness-based mass conservation:
 - \circ enforce H > 0 as NCP or VI
 - use reduced-space solver which has admissible states for stress balance solution
 - use geometric multigrid (?)
 - \circ result: $>10^5\,\Delta t_{
 m FE}$ achievable
- some limitations:
 - $\circ\,$ extra Newton steps needed to move margins x grid spaces
 - bed roughness eventually limits Newton solver convergence
 - calving and front-melting not addressed in this framework
 ...yet

```
    wiser now? ... if I were to start over with PISM:
    mpiexec -n N newpism -da_refine M \
        -ts_type arkimex -snes_type vinewtonrsls -pc_type mg
```