Free-boundary problems in models of the cryosphere

Ed Bueler

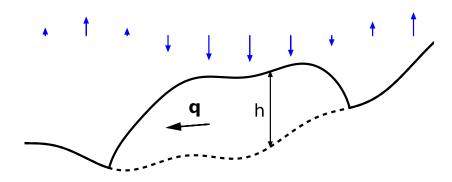
Dept of Mathematics and Statistics, and Geophysical Institute
University of Alaska Fairbanks
(funded by NASA Modeling, Analysis, and Prediction program)

SIAM GS July 2015 Stanford University

Outline

- The problem I'm worried about:
 - time-stepping free-boundary fluid layer models
- Practical conclusions:
 - approach I: semi-discretize in time
 - approach II: each time-step is weakly-posed free-bdry problem
 - newly-available numerical tools
 - new (?) limitations to discrete conservation

A fluid layer in a climate

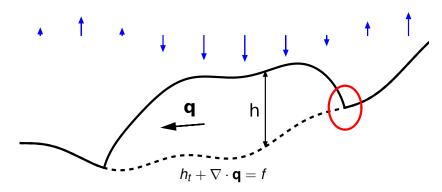


mass conservation PDE for a layer:

$$h_t + \nabla \cdot \mathbf{q} = \mathbf{f}$$

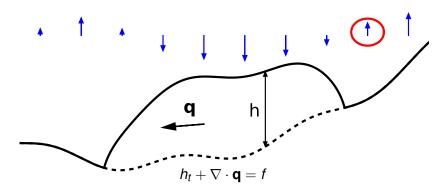
- h is a thickness: $h \ge 0$
- mass conservation PDE applies only where h > 0
- q is flow (vertically-integrated)
- source f is "climate"; f > 0 shown downward

A fluid layer in a climate: the troubles



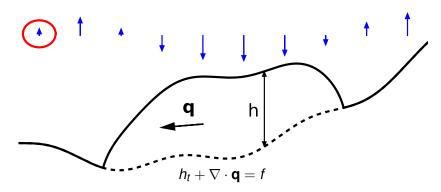
- h = 0 and what else at free boundary?
 - \circ shape at free boundary depends on both **q** and f
- f < 0 not "detected" by model where h = 0
 - how to do mass conservation accounting?
- $f \approx 0$ threshold behavior
 - h>0 as soon as f<0 switches to f>0

A fluid layer in a climate: the troubles



- h = 0 and what else at free boundary?
 - \circ shape at free boundary depends on both **q** and f
- f < 0 not "detected" by model where h = 0
 - o how to do mass conservation accounting?
- $f \approx 0$ threshold behavior
 - h > 0 as soon as f < 0 switches to f > 0

A fluid layer in a climate: the troubles



- h = 0 and what else at free boundary?
 - shape at free boundary depends on both q and f
- f < 0 not "detected" by model where h = 0
 - o how to do mass conservation accounting?
- $f \approx 0$ threshold behavior
 - h > 0 as soon as f < 0 switches to f > 0

Examples

glaciers

tidewater marsh

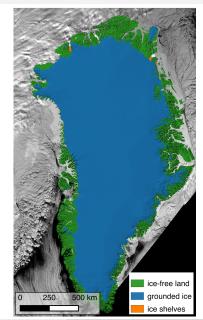
ice shelves & sea ice

tsunami inundation

and also surface hydrology, subglacial hydrology, \dots

I'm driven here by practical modeling: ice sheets

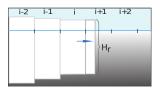
- the icy region is nearly-fractal and disconnected
- currently in our ice sheet model*:
 - explicit time-stepping
 - free boundary by truncation
- want for our model:
 - long implicit time steps
 - better conservation accounting to user



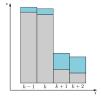
^{*}Parallel Ice Sheet Model, pism-docs.org

Has anyone solved these problems before?

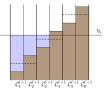
- yes, of course!
- generic result: ad hoc schemes near the free boundary



volume-of-fluid method at ice shelf fronts (Albrecht et al, 2011)



glacier ice on steep terrain (Jarosch, Schoof, Anslow, 2013)



tsunami run-up on shore (LeVeque, George, Berger, 2011)



volume-of-fluid method at glacier surface (Jouvet et al 2008)

Approach I: semi-discretize in time

$$h_t + \nabla \cdot \mathbf{q} = f$$
 \rightarrow $\frac{H_n - H_{n-1}}{\Delta t} + \nabla \cdot \mathbf{Q}_n = F_n$

- semi-discretize in time: $H_n(x) \approx h(t_n, x)$
- the new equation is strong form single time-step problem
 - a PDE in space where $H_n > 0$
 - o details of flux \mathbf{Q}_n and source F_n come from time-stepping scheme
 - ★ e.g. θ-methods or RK

1D time-stepping examples (and my **q**-agnosticism)

same:

equation

$$\frac{H_n - H_{n-1}}{\Delta t} + \nabla \cdot \mathbf{Q}_n = f$$

- BEuler time-step
- climate f
- bed shape
- constraint-respecting Newton scheme

top:

 $\mathbf{Q}_n = v_0 H_n$ hyperbolic advection with constant velocity

bottom:

$$\mathbf{Q}_n = -\Gamma |H_n|^{n+2} \\ \cdot |\nabla s_n|^{n-1} \nabla s_n$$

nonlinear degenerate diffusion

Approach II: weak form incorporates $H_n \ge 0$ constraint

define:

$$\mathcal{K} = \left\{ v \in W^{1,p}(\Omega) \,\middle|\, v \geq 0
ight\} = ext{admissible thicknesses}$$

• we say $H_n \in \mathcal{K}$ solves the weak single time-step problem if

$$\int_{\Omega} H_n(v - H_n) - \Delta t \, \mathbf{Q}_n \cdot \nabla (v - H_n) \ge \int_{\Omega} \left(H_{n-1} + \Delta t \, F_n \right) (v - H_n)$$

for all $v \in \mathcal{K}$

- o derive this variational inequality (VI) from:
 - integration-by-parts on strong form
 - ♦ thought about $H_n = 0$ areas

Weak solves strong; gives more info

- assume $\mathbf{Q}_n = 0$ when $H_n = 0$
 - this means Q_n describes a layer
- if $H_n \in \mathcal{K}$ solves weak single time-step problem (VI) then
 - PDE applies on the set where $H_n > 0$ (interior condition):

$$\frac{H_n - H_{n-1}}{\Delta t} + \nabla \cdot \mathbf{Q}_n = F_n$$

• plus inequality on the set where $H_n = 0$:

$$H_{n-1} + \Delta t F_n < 0$$

★ "climate negative enough during time step to remove old thickness"

Alternative weak formulation: NCP

- NCP = nonlinear complementarity problem
- abstractly, NCP is:
 - o given differentiable map $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$
 - solve

$$\mathbf{x} \geq 0, \quad \mathbf{F}(\mathbf{x}) \geq 0, \quad \mathbf{x}^{\top}\mathbf{F}(\mathbf{x}) = 0$$

- our case:
 - ∞ dimensions with m.c. equation $h_t + \nabla \cdot \mathbf{q} = f$
 - $\mathbf{x} = H_n$ and $\mathbf{F}(\mathbf{x}) = \text{(residual from discrete-time m.c. eqn.)}$
- in finite dimensions we have VI ↔ NCP equivalence:

$$\langle \mathbf{F}(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \ge 0 \quad \forall \mathbf{y} \in \mathcal{K} \qquad \iff \qquad \mathsf{NCP}$$

Numerical solution of the weak problem

the weak single time-step problem:

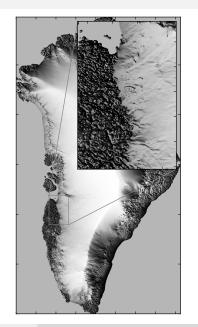
- is nonlinear because of constraint (even for \mathbf{Q}_n linear in H_n)
- can be solved by a Newton method modified for constraint
- scalable implementations are in PETSc* 3.5+
 - o see "SNESVI" object
 - o for NCP there are two implementations (Benson & Munson, 2006):
 - ★ reduced-set (active-set) method
 - semismooth method

^{*}Portable Extensible Toolkit for Scientific computation, www.mcs.anl.gov/petsc

Example: Greenland ice sheet

- given steady climate and bedrock elevations, what is shape of Greenland ice sheet?
 - climate = "surface mass balance"= precipitation runoff-from-melt
- assume simplest reasonable dynamics: non-sliding shallow ice approximation
- solve VI/NCP weak problem
 - steady state $(\Delta t \to \infty)$
 - o reduced-set Newton method
 - 900 m structured grid
 - Q¹ FEs in space
 - $N = 7 \times 10^{6}$ d.o.f.

(Bueler, submitted to J. Glaciol.)

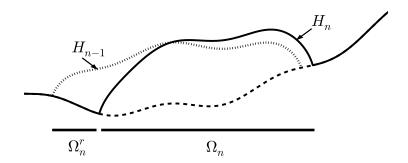


Conservation reporting: subsets

- suppose H_n solves the single time-step problem
- define

$$\Omega_n = \{H_n(x) > 0\}$$

 $\Omega_n^r = \{H_n(x) = 0 \text{ and } H_{n-1}(x) > 0\} \leftarrow \text{retreat set}$



Conservation reporting: time-series

define:

$$M_n = \int_{\Omega} H_n(x) dx$$
 mass at time t_n

then

$$\Delta t \left(-\nabla \cdot \mathbf{Q}_{n} + F_{n}\right)$$

$$M_{n} - M_{n-1} = \int_{\Omega_{n}} H_{n} - H_{n-1} dx + \int_{\Omega_{n}^{r}} 0 - H_{n-1} dx$$

$$= \Delta t \left(0 + \int_{\Omega_{n}} F_{n} dx\right) - \int_{\Omega_{n}^{r}} H_{n-1} dx$$

new term:

$$R_n = \int_{\Omega_n^r} H_{n-1} dx$$
 retreat loss during step n

Conservation reporting: *limitation*

- the retreat loss R_n is not balanced by the climate
 - R_n is caused by the climate, but we don't know a computable integral of climate F_n to balance it
- we must track three time series:
 - mass at time t_n : $M_n = \int_{\Omega} H_n(x) dx$
 - o climate (e.g. surface mass bal.) over current fluid-covered region:

$$C_n = \Delta t \int_{\Omega_n} F_n dx$$
 $pprox \int_{t_{n-1}}^{t_n} \int_{\Omega_n} f(t, x) dx dt$

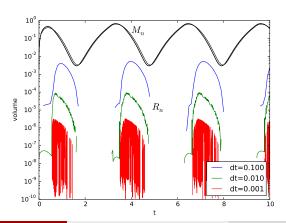
• retreat loss during time step: $R_n = \int_{\Omega^r} H_{n-1} dx$

$$R_n = \int_{\Omega_n^r} H_{n-1} dx$$

now it balances:

$$M_n = M_{n-1} + C_n - R_n$$

Reporting discrete conservation: $R_n \to 0$ as $\Delta t \to 0$



Summary

consider layer flow model $h_t + \nabla \cdot \mathbf{q} = f$ subject to signed climate f and where h is layer thickness

- goals/issues:
 - long time steps wanted
 - models have been limited by free-boundary lack-of-clarity
- approach:
 - include constraint on thickness: h > 0
 - o consider discrete-time problem before doing FEM/FVM/etc.
 - pose single time-step problem weakly as VI or NCP
 - solve by scalable constrained-Newton method (PETSc)
- new (?) result:
 - o discrete conservation requires tracking retreat-loss time-series
 - ★ in addition to climate input during time step