Conservation in free-boundary fluid layer models

Ed Bueler

Dept of Mathematics and Statistics, and Geophysical Institute University of Alaska Fairbanks

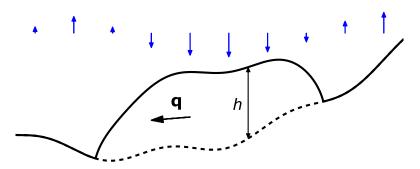
AGU 2014

Outline

1 The problem I'm worried about: Time-stepping free-boundary fluid layer models.

Practical consequences: Limitations in reporting discrete conservation. Numerical weak free boundary solution needed.

A fluid layer in a climate



mass conservation for a layer:

$$h_t + \nabla \cdot \mathbf{q} = \mathbf{f}$$

- h is a thickness: h > 0
- mass conservation PDE applies only where h > 0
- q is flow (vertically-integrated)
- source f is "climate"; f > 0 shown downward

glaciers

tidewater marsh

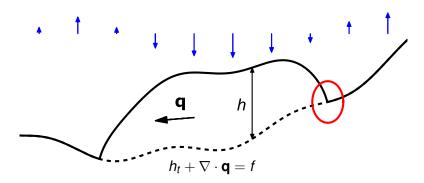
Examples

ice shelves & sea ice

tsunami inundation

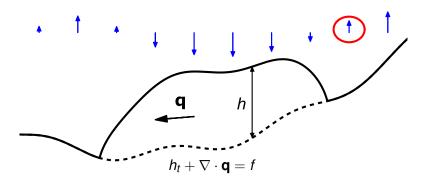
and subglacial hydrology, supraglacial runoff, surface hydrology, \dots

A fluid layer in a climate: the troubles



- h = 0 and what else at free boundary?
 - shape at free boundary depends on both q and f
- f < 0 not "detected" by model where h = 0
 how to do mass conservation accounting?
- $f \approx 0$ threshold behavior
 - h > 0 as soon as f < 0 switches to f > 0

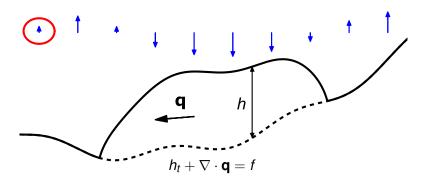
A fluid layer in a climate: the troubles



- h = 0 and what else at free boundary?
 - shape at free boundary depends on both q and f
- f < 0 not "detected" by model where h = 0
 - o how to do mass conservation accounting?
- $f \approx 0$ threshold behavior

h > 0 as soon as f < 0 switches to f > 0

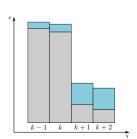
A fluid layer in a climate: the troubles



- h = 0 and what else at free boundary?
 - shape at free boundary depends on both q and f
- f < 0 not "detected" by model where h = 0
 - o how to do mass conservation accounting?
- $f \approx 0$ threshold behavior
 - o h > 0 as soon as f < 0 switches to f > 0

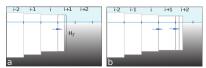
Anyone faced these problems before?

- yes, of course!
 - generic result: ad hoc schemes for finite volume/difference mass conservation near the free boundary

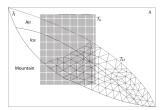


glacier ice on steep terrain

(Jarosch, Schoof, Anslow, 2013)



volume-of-fluid method at ice shelf fronts (Albrecht et al, 2011)



volume-of-fluid method (on fine grid) at glacier surface

Anyone faced these problems before?

- yes, of course!
 - generic result: ad hoc schemes for finite volume/difference mass conservation near the free boundary
- I don't mind "if ...then ..." in my code, but I want to know what mathematical problem it reflects!
- my goals:
 - redefine the problem so free boundary is part of solution
 - use numerical schemes which automate the details

Numerical models *must* discretize time

$$h_t + \nabla \cdot \mathbf{q} = f$$
 \rightarrow $\frac{H_n - H_{n-1}}{\Delta t} + \nabla \cdot \mathbf{Q}_n = F_n$

- semi-discretize in time: $H_n(x) \approx h(t_n, x)$
- the new equation is a "single time-step problem"
 - a PDE in space where $H_n > 0$
 - this PDE is the "strong form"
- details of flux Q_n and source F_n come from time-stepping scheme
 - o forward/backward Euler, trapezoid, RK all o.k.
 - o note low regularity of h(t, x) for x near margin

Weak form incorporates constraint

define:

$$\mathcal{K} = \left\{ v \in W^{1,p}(\Omega) \,\middle|\, v \geq 0
ight\} = ext{admissible thicknesses}$$

• define: $H_n \in \mathcal{K}$ solves the weak single time-step problem if

$$\int_{\Omega} H_n(v-H_n) - \Delta t \, \mathbf{Q}_n \cdot \nabla(v-H_n) \ge \int_{\Omega} \left(H_{n-1} + \Delta t \, F_n \right) \left(v - H_n \right)$$

for all $v \in \mathcal{K}$

- derive this variational inequality from:
 - the strong form and
 - integration-by-parts and
 - ⋄ arguments about $H_n = 0$ areas

Theorem: weak solves strong

Theorem. Assume $\mathbf{Q}_n = 0$ when $H_n = 0$. Assume $H_n \in \mathcal{K}$ solves weak single time-step problem and is smooth. Then

1 "interior condition" on set where $H_n > 0$:

$$\frac{H_n - H_{n-1}}{\Delta t} + \nabla \cdot \mathbf{Q}_n = F_n$$

2 on set where $H_n = 0$:

$$H_{n-1} + \Delta t F_n \leq 0$$

re part 2:

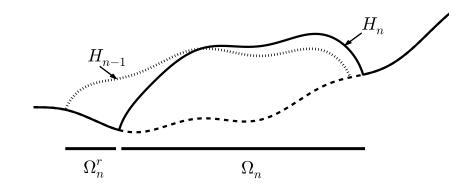
- "climate is negative enough to remove old thickness"
- assumption " $\mathbf{Q}_n = 0$ when $H_n = 0$ " is needed
 - ... yes, we are talking about a layer

Subsets for reporting conservation

- suppose H_n solves the weak single time-step problem
- define

$$\Omega_n = \operatorname{supp} H_n = \{H_n(x) > 0\}$$

$$\Omega_n^r = \left\{ H_n(x) = 0 \text{ and } H_{n-1}(x) > 0 \right\} \leftarrow \text{retreat set}$$



Reporting discrete conservation

define:

$$M_n = \int_{\Omega} H_n(x) dx$$
 mass at time t_n

then

$$\Delta t \left(-\nabla \cdot \mathbf{Q}_{n} + F_{n}\right)$$

$$M_{n} - M_{n-1} = \int_{\Omega_{n}} H_{n} - H_{n-1} dx + \int_{\Omega_{n}^{r}} 0 - H_{n-1} dx$$

$$= \Delta t \left(0 + \int_{\Omega_{n}} F_{n} dx\right) - \int_{\Omega_{n}^{r}} H_{n-1} dx$$

new term:

$$R_n = \int_{\Omega_n'} H_{n-1} dx$$
 retreat loss during step n

Reporting discrete conservation: claim

- we want to "balance the books" for the model user
- the retreat loss R_n is not balanced by the climate
 - yes, R_n is caused by the climate, but we don't know what computable integral it balances
- a numerical model must track three time series:
 - mass at time t_n : $M_n = \int_{\Omega} H_n(x) dx$
 - climate over fluid-covered region:

$$C_n = \Delta t \int_{\Omega_n} F_n dx \approx \int_{t_{n-1}}^{t_n} \int_{\Omega_n} f(t, x) dx dt$$

- retreat loss: $R_n = \int_{\Omega_n^r} H_{n-1} dx$
- now it is balanced:

$$M_n = M_{n-1} + C_n - R_n$$

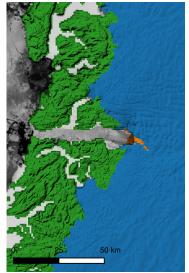
I am driven by practical modeling

- practical ice sheet modeling (e.g. Greenland at right)
- icy region nearly-fractal and disconnected
- currently in PISM*:
 - explicit time-stepping
 - free boundary by truncation
- want for PISM:
 - implicit time steps with free boundary
 - better conservation accounting to user

^{*=} Parallel Ice Sheet Model, pism-docs.org

I am driven by practical modeling

- practical ice sheet modeling (e.g. Greenland at right)
- icy region nearly-fractal and disconnected
- currently in PISM*:
 - explicit time-stepping
 - free boundary by truncation
- want for PISM:
 - implicit time steps with free boundary
 - better conservation accounting to user



PISM whole Greenland at 900m see Aschwanden C51A-0245 on 12/19

Numerical solution of the weak problem

the weak single time-step problem:

- is nonlinear because of constraint (even for \mathbf{Q}_n linear in H_n)
- can be solved by Newton method modified for constraint
 - reduced set method
 - semismooth method
- scalable implementations of both in PETSc 3.5
 - SNESVI class

Well-posedness of the weak problem

- I've been agnostic on form of Q_n
 - except " $\mathbf{Q}_n = 0$ where $H_n = 0$ " (i.e. it's a layer)
- but form of Q_n matters
 - for well-posedness and for numerical solutions
- cases to study:

$$\mathbf{Q}_n = \mathbf{X}(x)H_n$$
 transported layer
$$\mathbf{Q}_n = -k\nabla H_n$$
 linear diffusion
$$\mathbf{Q}_n = -\nabla(H_n^{\gamma}) = -\gamma H_n^{\gamma-1}\nabla H_n$$
 porous medium
$$\mathbf{Q}_n = -H_n^{\alpha}|\nabla(H_n+b)|^{\beta}\nabla(H_n+b)$$
 shallow ice approx. & diffusive shallow water
$$\mathbf{Q}_n = \text{worse (non-local)}$$
 ice shelf flow & sea ice & . . .

- variational inequality is generally monotone
 - generally coercive if $\mathbf{Q}_n \sim -\nabla H_n$

Two numerical examples

pop quiz:

same equation

$$\frac{H_n - H_{n-1}}{\Delta t} + \nabla \cdot \mathbf{Q}_n = f$$

- same climate f
- same bed shape
- same constrained-Newton scheme

how different are the \mathbf{Q}_n ?

Two numerical examples

$$\mathbf{Q}_n = v_0 H_n$$
 hyperbolic (constant vel.)

$$\mathbf{Q}_n = -\Gamma |H_n|^{n+2} \cdot |\nabla h_n|^{n-1} \nabla h_n$$
 highly-nonlinear diffusion

Terminal slide

- I'm considering layer flow problems:
 - model has conservation eqn: $h_t + \nabla \cdot \mathbf{q} = f$
- suggestions:
 - include constraint on thickness: h > 0
 - pose single time-step problem weakly as variational inequality
 - solve single time-step problem numerically by constrained-Newton method
- claim: for any numerical approach,
 - exact discrete conservation requires tracking retreat loss
 - in addition to computable integrals of climate
 - o but it *isn't really possible* except in $\Delta t \rightarrow 0$ limit