

Evaluating the sensitivity of an ice sheet model to changes in bed elevation and inclusion of membrane stresses

Andy Aschwanden¹, Ed Bueler², and Constantine Khroulev³

¹Arctic Region Supercomputing Center University of Alaska Fairbanks, USA

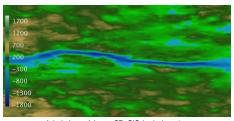
²Dept of Mathematics and Statistics, University of Alaska Fairbanks, USA

³Geophysical Institute University of Alaska Fairbanks, USA

EGU 2010

Acknowledgments

Arctic Region Supercomputing Center



- Martin Truffer (UAF)
- ► Heinz Blatter (ETH)

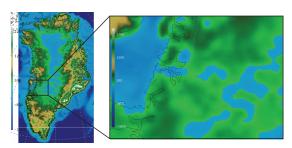
Motivation

- follow-up to Jim Fastook's talk at WAIS and AGU 2009
- new high-resolution (< 5km) bedrock elevlation data available for Jakobshavn Isbræ and Petermann Glacier (from CReSIS, http://www.cresis.ku.edu)
- more outlet glaciers coming soon

Jakobshavn Isbræ: CReSIS bed elevation

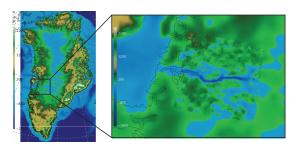
Working Hypotheses

- 1. Ice sheet models are highly sensitive to changes in bedrock elevation
- At horizontal grid resolutions close to, or below, one mean ice thickness we are approaching the limit of the shallow ice approximation


We use the Parallel Ice Sheet Model (PISM, www.pism-docs.org) for all simulations

see posters XY363, XY362, XY359, XY352 during the poster session today

Bedrock Elevation


- SeaRISE data set on 5km grid, compiled by Jesse Johnson, Brian Hand, Tim Bocek (University of Montana)
- CReSIS bedrock data on 125m grid
- interpolate 5km bed (Bamber et al., 2001) onto 1km grid, average
 Jakobshavn CReSIS bed onto 1km grid
- quick & dirty, cut & paste, no boundary-smoothing (worst case for stability/time-stepping)

Bedrock Elevation

- SeaRISE data set on 5km grid, compiled by Jesse Johnson, Brian Hand, Tim Bocek (University of Montana)
- CReSIS bedrock data on 125m grid
- interpolate 5km bed (Bamber et al., 2001) onto 1km grid, average
 Jakobshavn CReSIS bed onto 1km grid
- quick & dirty, cut & paste, no boundary-smoothing (worst case for stability/time-stepping)

Stress Balances

Shallow Ice Approximation

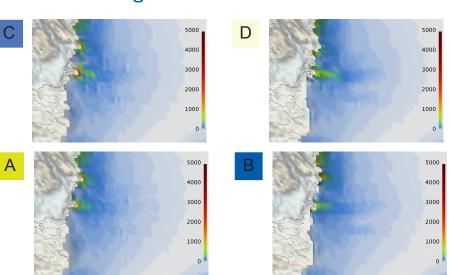
The well known "classic" non-sliding SIA

Hybrid Stress Balance

The Bueler Brown Approximation (BBA) is a hybrid stress balance (Bueler and Brown, 2009). In detail it comprises 3 layers

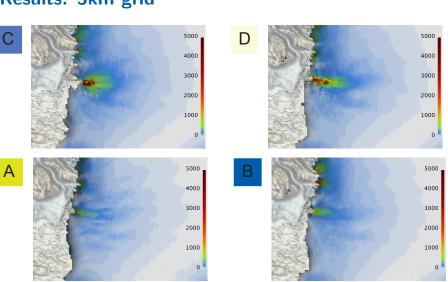
- top: non-sliding shearing ice mass (SIA) drives the membrane deformation
- bottom: layer to define resistance (Coulomb friction law)
- middle: membrane to handle membrane stresses between the
 - driving force of top (SIA) layer and
 - resistive force of bottom layer

Experimental Design

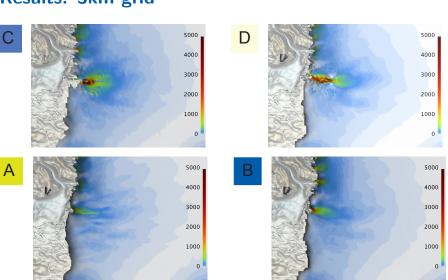

A 4-way qualitative not a quantitative experiment with:

- constant climate
- same resolution for the whole ice sheet, no nesting
- same physical parameters for all runs

grid size	run length	cpus			
10 km	25'000 a	128	w CReSIS	C	D
				Λ	
5 km	1'000 a	256	w/o CReSIS	A	B
2 1	20	204 510		SIA	BBA
3 km	20 a	384-512			



Results: 10km grid



Results: 5km grid

Results: 3km grid

Simulated U_{max}

How is SIA doing compared to BBA?

^{*} only at a few grid points

The Otherside Of The Coin

- with a (relatively conservative) explicit, adaptive time-stepping scheme, PISM is robust with respect to rough bedrock topography
- however, with CReSIS bedrock data, run times are about $10 \times$ longer
 - rougher beds means higher driving stresses
 - therefore the diffusivity of the surface kinematical equation can be higher too
- ► We will explore this in the future

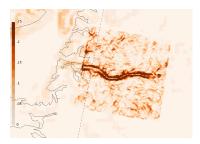


Figure: "bed roughness" $mag(\nabla b)$

Summary

High-resolution bedrock data of outlet glaciers

- is worthwhile incorporating because fast-flowing ice streams are modeled more realistically but be aware of the additional costs
- requires a careful choice of stress balance approximation (limits of the applicability of the shallow ice approximation)
- poses a new challenge to ice sheet modelers and ice sheet models
- \Rightarrow The SeaRISE community and CReSIS are working together on improving bedrock elevation data

References

Bamber, J., R. Layberry, and S. Gogenini (2001). A new ice thickness and bed data set for the Greenland ice sheet 1: Measurement, data reduction, and errors. *J. Geophys. Res.* 106 (D24), 33,773–33,780.

Bueler, E. and J. Brown (2009). Shallow shelf approximation as a "sliding law" in a thermodynamically coupled ice sheet model. *J. Geophys. Res.* 114. F03008, doi:10.1029/2008JF001179.