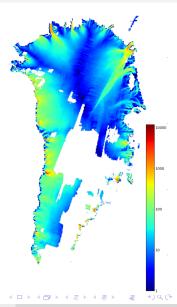
Modeled and observed fast flow in the Greenland ice sheet

Ed Bueler¹
Constantine Khroulev¹
Andy Aschwanden²
Ian Joughin³

28 July 2009 supported by NASA grants NAG5-11371 and NNX09AJ38C

¹ Dept of Mathematics and Statistics, University of Alaska Fairbanks

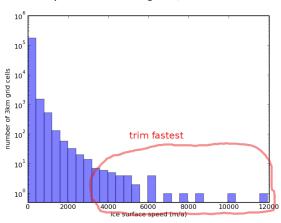
² Arctic Region Supercomputing Center, University of Alaska Fairbanks


³ Polar Science Center, Applied Physics Lab, University of Washington, Seattle

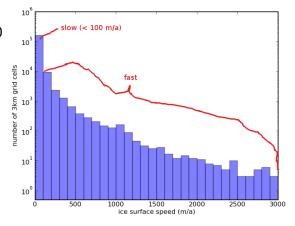
Outline

- 1. Observations, and modeling goals
- 2. Model description
- 3. Results

inSAR surface velocity observations


- RADARSAT SAR
- acquired Dec 2005 to Apr 2006
- inSAR and speckle-tracking to produce surface velocity^a on 500 m grid
- comparison to GPS suggests errors <
 10% for > 100 m/a ice; observation error
 much less than model error below
- here: averaged onto 3 km grid
- method: 3 km cell is kept if at least 20% of 500 m cells have values
- 71.6% area coverage on 3 km grid

^aJoughin et al. [2002,2008,in preparation]

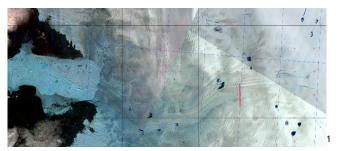

"fast flow" versus fastest flow

- histogram of observed surface speed on 3 km grid ↓
- exist 3 km cells with \approx 12 km/a surface speed
- ... but few, and in tight, steep fjord topography
- e.g. only eleven 3 km cells with average speed above 5000 m/a
- note log scale on y-axis
- this talk: we trim off > 3000 m/a cells, for comparison to whole ice sheet model

goal: model the fast flow

- Definition. fast flow means 100 m/a to 3000 m/a surface speed; slow means < 100 m/a
- Goal: we want a model for the present dynamical state of Greenland ice sheet, with few tunable parameters, which comes close to this observed histogram →

goal: model the fast flow 2


- why this particular goal?
 - fast-flowing regions will dominate century- and millenium-scale dynamical response to climate changes
 - * . . . especially sea level contribution
 - * shallow models have had trouble with fast flow
 - * a specific modeling goal focusses the mind

goal: model fast flow 3

- is matching surface velocity enough?
 - * no
 - ... but inSAR surface velocities are the highest-dimensional existing dynamical info on the present state
- why not just do inverse modeling of surface velocities?
 - * yes, we will use inversion to get initial state for predictions
 - * ...but, for prediction and scenarios, we need a model with evolving geometry, temperature, basal resistance, etc.

the resolution challenge

- fast flow occurs
 - near, within, and over marginal mountain ranges
 - * along subglacial trenches
- therefore shallow assumptions need to be removed
- and resolution needs to be high

5km grid (red +) and channel width (red segment) though which much of the Ilulissat (Jakobshavn) Glacier is fed

composite ASTER image, M. Fahnestock and M. Truffer

this talk: a small parameter study

- a small parameter study² using a hybrid shallow model
- results from eight whole Greenland ice sheet model runs
- each run: 100 model years on 3 km grid
- before start of run: spin-up in steady present climate for total of 110 k model years³
- each run starts from present bed elevation and thickness (Bamber et al 2001)
- assumed steady, present climate:
 - * Fausto et al. (2008) temperature parameterization
 - * PARCA accumulation map (van der Veen et al. 2001)
 - * positive degree day scheme for surface mass balance
- at end of each run: compare surface velocities to observed

²more below . . .

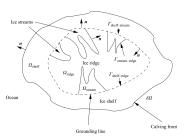
³On grids refining from 10 km to 5 km to 3km. Purpose: to equilibriate ice and bedrock temperature, in balance with

Outline

1. Observations, and modeling goals

- 2. Model description
- 3. Results

shallow model ideas

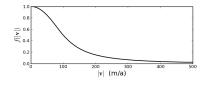

- the Greenland ice sheet has aspect ratio $\approx 1/1000$
- fastest-flowing parts include significant bed topography so shallow models must miss something (acknowledged!)
- "shallow" models for grounded ice include
 - * shallow ice approximation (SIA): gravity-driven lubrication flow, sticking to bed and shearing in vertical planes; no sliding in the SIA as understood here
 - dragging shallow shelf approximation (SSA) for ice streams: gravity-driven viscous membrane sliding over variable-strength bed ("till")


shallow model ideas 2

C. Schoof (2006) insight, for diagnostic case

$$\mathsf{SSA} + (\mathsf{plastic}\ \mathsf{till}) =$$

well-posed free boundary problem for location and velocity of sliding


- till strength/resistance given by yield stress τ_c : $\vec{\tau}_b = \tau_c \mathbf{v}_b/|\mathbf{v}_b|$
- scheme is a whole ice sheet form of D. MacAyeal's individual ice stream models (1989)

Parallel Ice Sheet Model (PISM)

- SIA and SSA velocity solutions, combined or separate
- thermomechanically-coupled
- parallel:
 - * 3 km grid runs here done on 64, 128, or 256 processors at Arctic Region Supercomputing Center, Fairbanks
 - * $501 \times 935 \times 201$ ice grid; \approx 300 million temperature and velocity unknowns
 - * all runs here total \approx 8000 processor-hours
 - * is that a lot of processor-hours?
- homepage www.pism-docs.org

PISM: Schoof ideas adapted to prognostic modeling

- SSA-as-a-sliding law (Bueler et al. 2009)
 - * $\mathbf{U} = f(|\mathbf{v}|)\mathbf{u} + (1 f(|\mathbf{v}|))\mathbf{v}$, where
 - * v is SSA solution
 - * u is SIA solution
 - U is model velocity used in mass continuity and energy conservation equations

pseudo-plasticity:

$$ec{ au_b} = au_c rac{\mathbf{v}_b}{|\mathbf{v}_b|^{1-q} (100 \text{ m/a})^q}$$

 surround ice sheet by thin notional ice shelf to maintain ellipticity of SSA

PISM: (newly!) polythermal by enthalpy method

- Aschwanden and Blatter (2008 JGR; in preparation 2009)
- E=enthalpy=(sensible thermal + latent thermal + potential of pressure)
- temperature T and liquid water fraction ω are functions of enthalpy and pressure, for cold and temperate ice:

$$T = T(E, p), \qquad \omega = \omega(E, p)$$

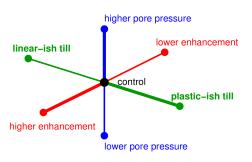
- think: E = E(t, x, y, z) is the primal thermal variable in conservation of energy equation
- ullet solve conservation of energy equation for E

PISM: basal thermo-mechanical model

yield stress determined by Mohr-Coulomb:

$$\tau_c = c_0 + (\tan \phi) \left(\rho g H - p_w \right)$$

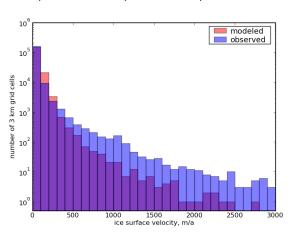
- $c_0 = 0$
- basal melt rate from 1 % ω rule (Greve 1997)
- \bullet pore water pressure p_w is local, time-integrated function of basal melt rate
- ullet till friction angle ϕ determined by bed elevation below sea level
 - motivated by presumed marine history of sediment below sea level (Huybrechts and de Wolde 1999)
 - * $\phi = 5^{\circ}$ at -700 m and below
 - * $\phi = 20^{\circ}$ at +300 m and above
 - linear between
- model description done!

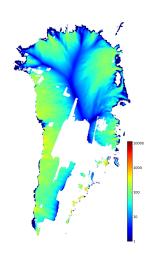

Outline

1. Observations, and modeling goals

- 2 2. Model description
- 3. Results

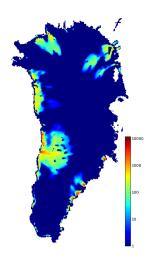
parameter study: control run plus six variations



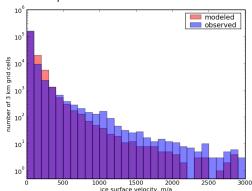

- enhancement factor e: 1, 3, 5
- exponent q in basal power law; 0=plastic, 1=linear: 0.50, 0.25, 0.10
- limit p_{max} on pore water pressure; % of overburden: 95, 98, 99
- first directly affects only SIA velocities, last two directly affect only SSA velocities

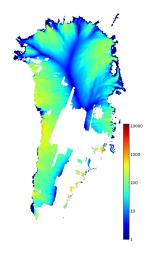
Control run results

 enhancement factor=3, limit on pore water pressure=98%, exponent in basal power law=0.25

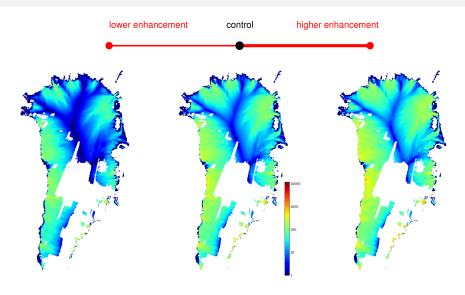


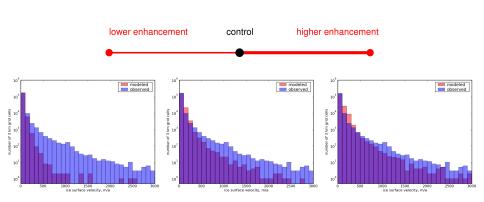
Control run results 2: how much is from sliding?


sliding speed, on same velocity scale

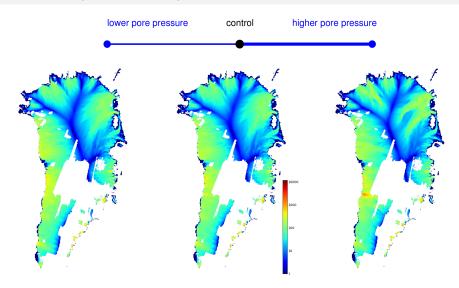


Control run results 3: what if there is no sliding at all?

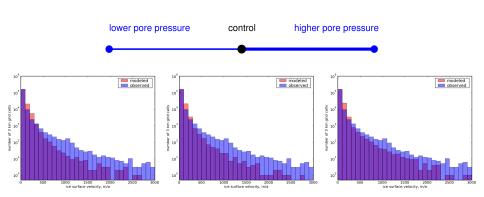

- enhancement factor=3 and no SSA computation (no sliding; SIA only; "sub-control" run?)
- SIA-only models with no sliding give reasonable distribution of fast flow, if done on 3 km grid
- distinction from with-SSA-sliding runs seen in time-dependence ... another talk ...



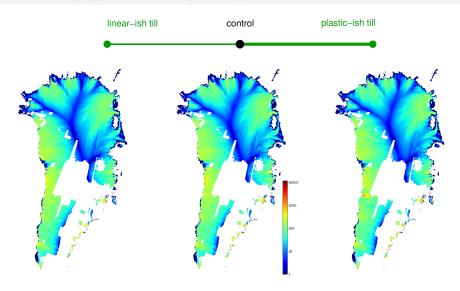
Enhancement factor axis



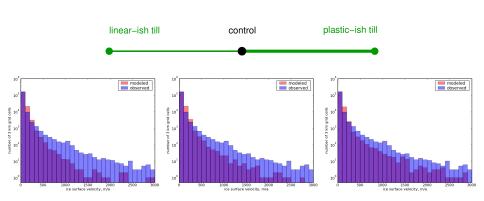
Enhancement factor axis 2



Allowed pore water pressure axis



Allowed pore water pressure axis 2

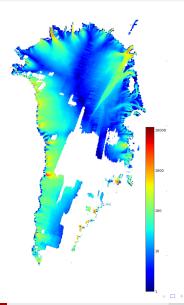


Plasticity (power law power) axis

Plasticity (power law power) axis 2

Summary of results

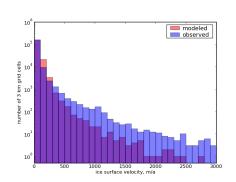
- high resolution is a key to modeling fast flow, regardless of shallowness
- SIA models can yield fast flow, but then too much is in the 100 m/a to 300 m/a range, compared to observed
- evidence here for two parameters effecting fast flow in Greenland:
 - high subglacial water pressure
 - * plastic or nearly-plastic till behavior

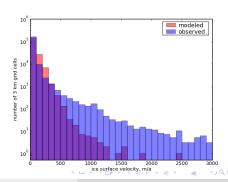


Conclusions

- the SSA is a shallow sliding law
 - * which balances basal shear by membrane stresses
 - * ...but it requires a parameterization of subglacial "wet and soft" processes
- enthalpy-formulated polythermal ice models are
 - * easy to implement, and
 - * add credibility to conservation of energy and drainage models
- parallelism is effective
- 3 km grid or finer Greenland ice sheet models with ice streams will contribute to IPCC AR5
- next steps:
 - inverse modeling for initialization
 - better basal and surface process modeling
 - * more complete stress balances for outlet glaciers
- The End

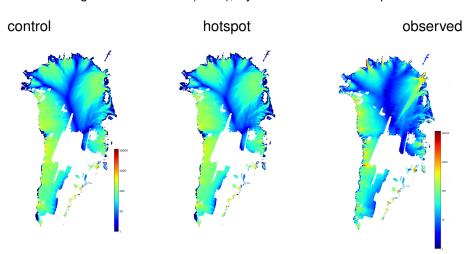
inSAR surface velocity for Greenland




Extra: Control run results 4: what happened at 20 model years?

 previous results were at 100 model years; here is an example at 20 model years

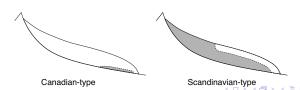
control run at 100 a


control run at 20 a

Extra: Geothermal high at source of NE Greenland

• following Fahnestock et al (2001), try a 970 mW m-2 "hot spot"

PISM, cont.


- verifiability
 - construction of verification tests main focus during development (Bueler et al. 2005,2007)
 - tests for SIA, SSA, and thermo-components
 - can be checked at any time
- derivability
 - its a big C++ program
 - Potsdam group (Levermann et al.) has PISM-PIK Antarctic model with improved ice shelf dynamics and fracture-based calving

PISM: polythermal by enthalpy method 2

conductivity of polythermal ice:

$$k = \begin{cases} k_{\text{ice}}, & T(E, p) < T_{\text{pmp}} \\ 0, & T(E, p) = T_{\text{pmp}} \end{cases}$$

- flow law is Paterson & Budd (1982) with Lliboutry & Duval (1985) dependence on ω
- ullet cold-temperate transition surface (CTS) is boundary of $\omega>0$ region
- ... so we have no explicit representation of CTS as a surface
- ... and no restriction on evolving CTS shape

