

Why we model ice sheets

Andy Aschwanden

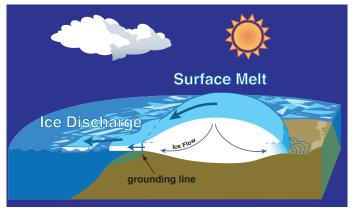
Outline


Setting the stage

Thermodynamics

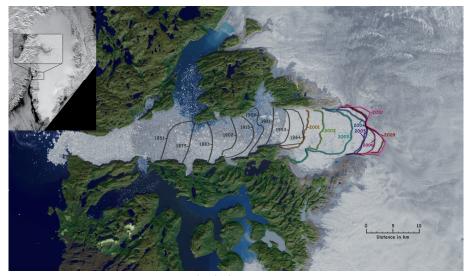
Boundary conditions

Model validation



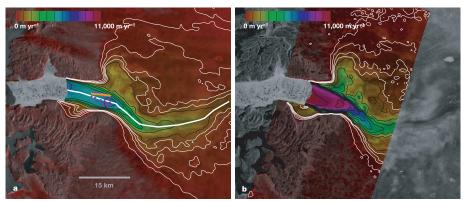
Why we care about ice sheets

- knowledge of changes in Greenland and Antarctica is critical for understanding present and future sea level rise
- holds a great potential to raise sea level substantially
- observations over the past decades show
 - rapid acceleration of several outlet glaciers
 - increased mass loss
 - thinning around the margin
 - loss of ice shelves
- ⇒ we all have heard these arguments before


How does an ice sheet lose mass?

modified from ICESat brochure

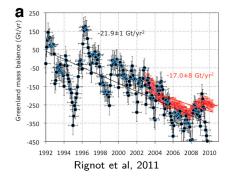
before the mid-90s mass loss was dominated by surface mass balance ice discharge = ice thickness \times vertically-averaged horizontal velocity


Jakobshavn Isbræ, west Greenland

credit: NASA SVS and M. Fahnestock

Speed-up of Jakobshavn Isbræ 1992-2000

▶ almost doubled its flow speed between the 1992 and 2000



Joughin et al. (2004)

What has the future in stock?

Since 2000 the mass balance has been persistently negative with

- a decrease in surface mass balance
- an increase in ice discharge

"Realistic projections of ice sheet response to a changing climate should be based on a physical understanding of the processes involved, rather than trend extrapolation of historical observations" (Arthern & Hindmarsh, 2006)

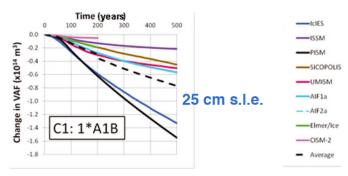
Sea Level Response to Ice Sheet Evolution

- "SeaRISE" led by Bob Bindschadler
- national and international unfunded participants

Journal of Glaciology, Vol. 59, No. 214, 2013 doi:10.3189/2013JoG12J125

195

Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)


Robert A. BINDSCHADLER, ¹ Sophie NOWICKI, ¹ Ayako Abe-OUCHI, ² Andy ASCHWANDEN, ³ Hyeungu CHOI, ⁴ Jim FASTOOK, ⁵ Glen GRANZOW, ⁶ Ralf GREVE, ² Gail GUTOWSKI, ⁹ Ute HERZFELD, ⁶ Charles JACKSON, ⁶ Jesse JOHNSON, ⁶ Constantine KHROULEV, ³ Anders LEVERMANN, ¹⁰ William H. LIPSCOMB, ¹¹ Maria A. MARTIN, ¹² Mahibeu MORILGHEM, ³³ Byron R. PARIZEK, ¹⁴ David POLLARD, ¹⁵ Stephen F. PRICE, ¹¹ Diandong REN, ¹⁶ Fuyuki SAITO, ¹⁷ Tatsuru SATO, ⁷ Hakime SEDDIK, ⁷ Helene SEROUSSI, ¹⁰ Kunio TAKAHASHI, ⁷ Ryan WALKER, ¹⁸ We Li WANG ¹

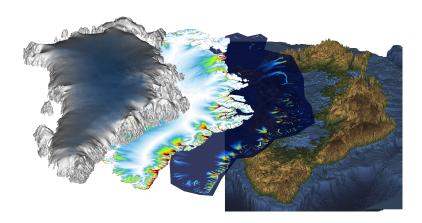
NASA Goddard Space Flight Center, Greenbelt, MD, USA E-mail: robert.a.bindschadler@nasa.gov ²Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA ⁴Sigma Space Corporation, Lanham, MD, USA ⁵Computer Science/Quaternary Institute, University of Maine, Orono, ME, USA ⁶College of Arts and Sciences, University of Montana, Missoula, MT, USA Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan 8Institute for Geophysics, University of Texas at Austin, Austin, TX, USA. Department of Electrical, Computer and Energy Engineering and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA ¹⁰Physics Institute, Potsdam University, Potsdam, Germany 11 Los Alamos National Laboratory, Los Alamos, NM, USA ¹²Potsdam Institute for Climate Impact Research, Potsdam, Germany ¹³Department of Earth System Science, University of California, Irvine, Irvine, CA, USA ¹⁴Mathematics and Geoscience, Penn State DuBois, DuBois, PA, USA ¹⁵Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA, USA ¹⁶Department of Physics, Curtin University of Technology, Perth. Australia ¹⁷ Japan Agency for Marine-Earth Science and Technology, Research Institute for Global Change, Showamachi, Kanazawa. Yokohama, Kanagawa, Janan

Setting the stage

¹⁸Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
¹⁹Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA

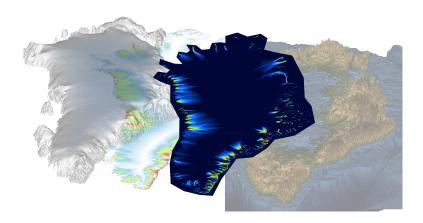
"SeaRISE"

Bindschadler et al. (2013), mod.

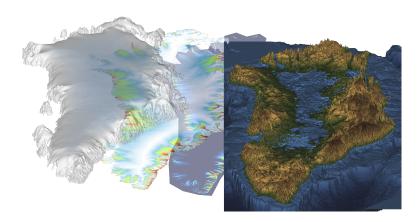

Would you rather trust

- a particular model
- the ensemble average

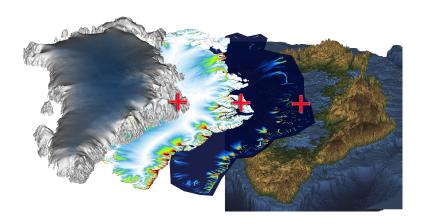
none


⇒ let's look behind the scenes

12


- ▶ ice dynamics
- thermodynamics
- surface processes

- boundary conditions
- hydrology
- ▶ ice-ocean interaction (e.g. calving)


- ▶ ice dynamics
- ► thermodynamics
- surface processes

- boundary conditions
- hydrology
- ice-ocean interaction (e.g. calving)

- ▶ ice dynamics
- thermodynamics
- surface processes

- ► boundary conditions
- hydrology
- ice-ocean interaction (e.g. calving)

- ▶ ice dynamics
- ► thermodynamics
- ► surface processes

- ► boundary conditions
- ► hydrology
- ► ice-ocean interaction (e.g. calving)

Parallel Ice Sheet Model

Documentation: www.pism-docs.org

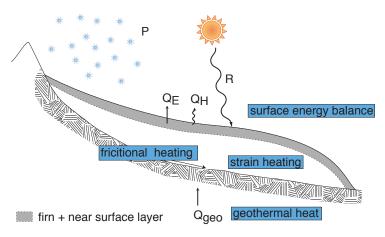
Source code: https://github.com/pism/pism

- open-source
- parallel
- high-resolution

- ▶ led by PI Ed Bueler, UAF
- jointly developed by UAF and Potsdam Institute for Climate Impact Research
- main software engineer: Constantine Khroulev, UAF
- > 20 contributors and users worldwide
- funded by

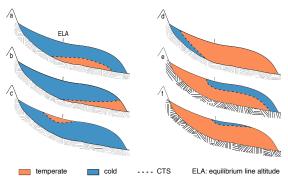
Outline

Setting the stage


Thermodynamics

Boundary conditions

Model validation

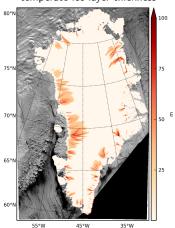

Heat sources

Polythermal glaciers

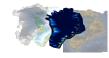
Cold ice

below pressure melting point

Temperate ice


▶ at pressure melting point

Temperate ice in Greenland


- $ho \approx 35\%$ of the base is temperate (by area)
- ➤ ≈ 0.5 % of ice is temperate (by volume)
- but temperate where strain rates are already high

temperate ice layer thickness

Aschwanden et al. (2012, modified)

Thermodynamics

Cold ice

- below pressure melting point
- solid phase only
- no liquid water content

Temperate ice

- at pressure melting point
- binary mixture of solid and liquid phase
- ▶ up to 5 % liquid water within the ice matrix

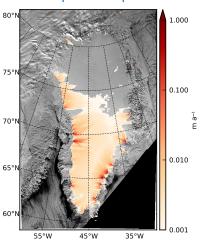
Viscosity of ice depends on

- temperature
- liquid water fraction
- effective strain rate
- crystal orientation, impurities, etc.

Enthalpy equation

- ► Conventional firn and glacier models are not energy conserving
- ► We replace the advection-diffusion-production equation for temperature with a similar equation for enthalpy (i.e. inner energy)

$$\rho \frac{\partial \mathbf{Z}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{Z} = -\nabla \cdot \mathbf{q} + Q$$

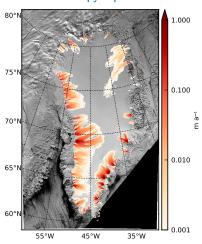

► Same PDE ⇒ relatively easy to implement

Aschwanden and Blatter (2009), Aschwanden et al. (2012)

Basal melt rates

- conservation of energy
- more realistic basal melt rates
- more realistic ice streams

temperature equation



Aschwanden et al. (2012, modified)

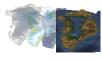
Basal melt rates

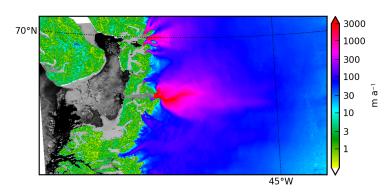
- conservation of energy
- more realistic basal melt rates
- more realistic ice streams

enthalpy equation

Aschwanden et al. (2012, modified)

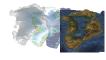
Outline


Setting the stage

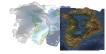

Thermodynamics

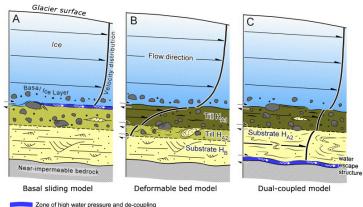
Boundary conditions

Model validation


Jakobshavn flows fast

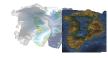
- ▶ Why does Jakobshavn flow so fast?
- boring from above

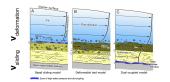

Jakobshavn flows fast


- Why does Jakobshavn flow so fast?
- boring from above

Ice flow

V sliding




Zone of high water pressure and de-coupling

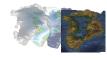
Kjær et al., (2006, modified)

v : velocity $\mathbf{v} = \mathbf{v}_{\text{deformation}} + \mathbf{v}_{\text{sliding}},$

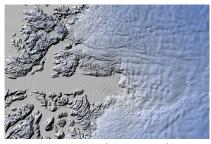
Ice flow

scaling arguments tell us:

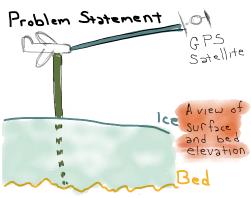
$$\mathbf{v}_{\mathrm{deformation}} \sim (\sin \alpha)^3 (H)^4$$


H: ice thickness

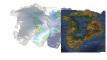
 α : surface slope


Example

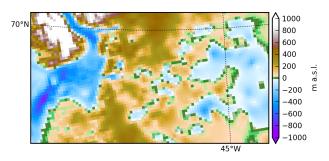
$$\frac{\delta H = 100 \, \mathrm{m}}{H = 1000 \, \mathrm{m}} = 10 \, \% \quad \Rightarrow \quad \frac{\delta \mathbf{v}}{\mathbf{v}} = 40 \, \%$$


Surface slope & ice thickness

surface elevation (slope)

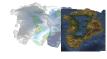


GIMP DEM (Howat et al.)

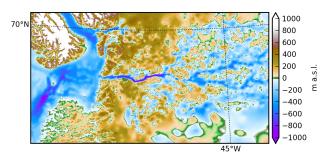


credit: Jesse Johnson

Basal topography

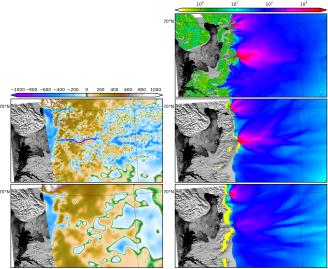


Bamber et al. (2001)

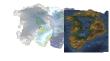

- Operation Ice Bridge Mission since 2009
- Center for Remote Sensing (CReSIS) radar

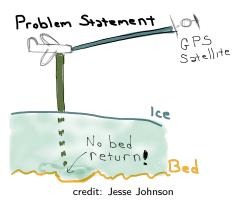
▶ huge progress between 2001 and 2012

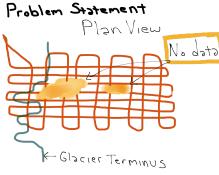
Basal topography



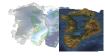
Griggs et al. (2012)

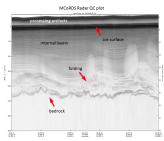

- Operation Ice Bridge Mission since 2009
- Center for Remote Sensing (CReSIS) radar
- ▶ huge progress between 2001 and 2012


It makes a difference



Ice thickness





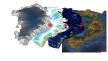
credit: Jesse Johnson

A new depth sounder

MRI

Development of a high power, large-antenna array for a Basler for sounding and imaging of fast-flowing glaciers and ultra wideband radars to map near-surface internal layers. PI: Rick Hale, University of Kansas. NSF. Current support 2012–2014.

Outline

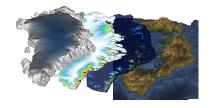

Setting the stage

Thermodynamics

Boundary conditions

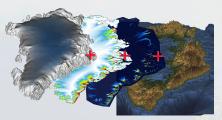
Model validation

Ice sheet model validation

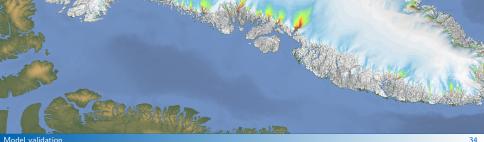

 comparing model results to a set of observations adequate to falsify a model

Direct validation

of substantial sub-systems such as

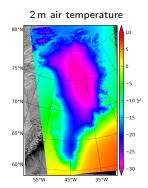

- basal hydrology
- ▶ thermodynamics
- ice dynamics

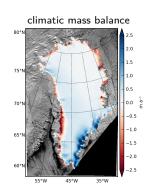
is difficult or impossible


View as part of an earth system model

- we evaluate how the system responds to a given forcing
- "How successful is a state-of-the art ice sheet system model (i.e. the combination of physical models, their numerical approximations and implementations, and particular choices of boundary forcing and initial states) in reproducing observations of quantities such as ice thickness, and their temporal changes?"

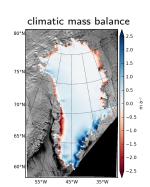
- A hindcast is a way of testing a mathematical model.
- ► Known or closely estimated inputs for past events are entered into the model to see how well the output matches the known results.

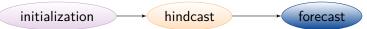


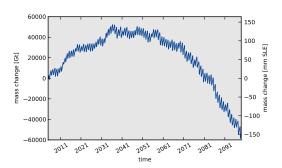

Initialization

- ► RACMO2/GR driven by ERA-reanalysis from 1961-2004
- ▶ PISM driven by mean values of:



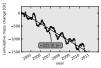

Hindcast


- RACMO2/GR driven by ERA-reanalysis from 1961-2004
- ▶ PISM driven by monthly time-series of:



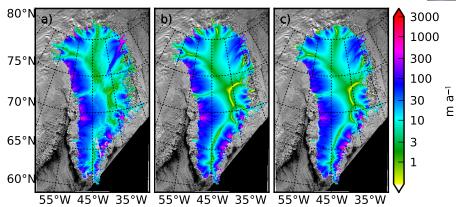
Forecast

▶ Not the topic of this talk



Comparison with observations

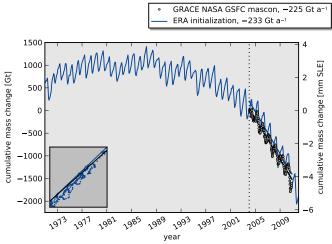
Hindcasts cover an era where we have a variety of in-situ and remotely-sensed observations such as:



► mean flow speed from 2000,2006–2008 (SAR) from *Joughin et al.* (2010)

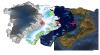
- cumulative mass change from 2003–2011 (GRACE) from Luthcke et al. (under review)
- ▶ elevation change from 2003–2009 (ICESat) from *Sørensen et al.* (2011)

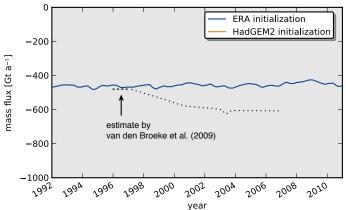
Flow speed


(a) SAR (Joughin et al, 2010) (b) ERA init.

(c) HadGEM2 init.

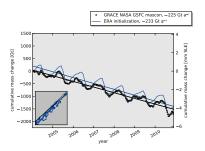
reasonable agreement with observations


Mass changes



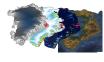
an almost perfect fit (?)

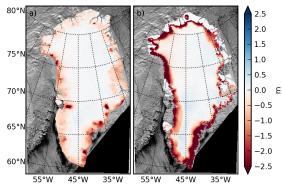

Ice discharge at ice/ocean interface



- simulated ice discharge remains nearly constant
- observed increase not simulated

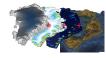
Wait a minute...




- ▶ 2000–2008 mass changes equally split between changes in surface mass balance and ice discharge (van den Broeke et al, 2009)
- but simulated ice discharge is nearly constant
- why do we get such a good agreement with observed mass loss?

We can get "the right result" for the "wrong reason"

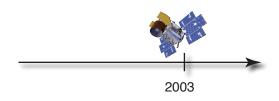
Surface elevation changes 2003–2009



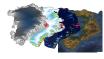
(a) ICESat (Sørensen et al, 2011) (b) ERA init.

spatially-rich time-series are needed!

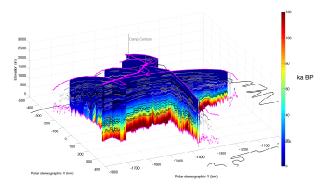
Limitations of hindcasting



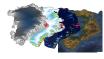
Theoretical


- ► The appropriate time-scale for hindcasting is unknown
- ► Hindcasts are short (decades) compared to the time-scale associated with changes in energy (thousands of years)
- Even a hindcast showing good agreement with all available observations may not capture the system's true behavior

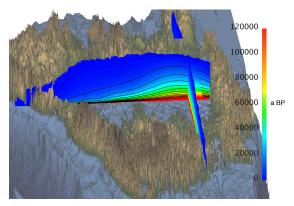
Practical


Duration of hindcasts is limited by the length of observational records

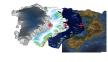
Outlook: Isochrones



- distribution of energy within an ice sheet cannot be measured directly
- ▶ age field has similar time-scales



credit: J. MacGregor


Outlook: Isochrones

- distribution of energy within an ice sheet cannot be measured directly
- age field has similar time-scales

Outlook: statistical frameworks

 hindcasting may be integrated into comprehensive statistical frameworks to quantify uncertainties in ice sheet evolution due to different sources of model and observation uncertainty

NASA ROSES Cryosphere

Challenging the Parallel Ice Sheet Model with reproducing the present-day mass loss signal from the Jakobshavn basin, Greenland. PI A. Aschwanden, 2013-2016.