

Understanding ice sheets through observations and models

Andy Aschwanden

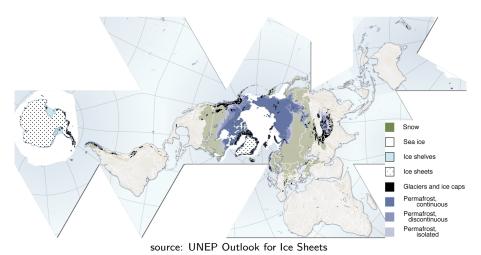
- ► Artists, Tourists: beautiful landscape
- ► Geographers: element of landscape
- ► Geologists: soft rock, sediment
- ► Hydrologists: water reservoir
- Climatologists subsystem of climate system, climate archive
 - Physicists: thermome and the onian fluid
- Nathematicians: free boundary and a full dyn
- Electrical engineers: one sideo accessible diefectric
- Glaciologists: part of the cryosphere

- Artists, Tourists: beautiful landscape
- ► Geographers: element of landscape
- Geologists: soft rock, sediment
- ► Hydrologists: water reservoir
 - Climatologists subsystem of climate system, climate archive
 - Physicists: thermome and the onian fluid
- Nathematicians: free boundary and a full dyn
- Electrical engineers: one sided accessible dielectric
- Glaciologists: part of the cryosphere

- Artists, Tourists: beautiful landscape
- ► Geographers: element of landscape
- ► Geologists: soft rock, sediment
- ► Hydrologists: water reservoir
 - Climatologista cubevstem o
 - Physicists: thermome
- Nathematicians: free boundary
- Electrical engineers: one sided accessible dielect
- Glaciologists: part of the cryosphere

- Artists, Tourists: beautiful landscape
- ► Geographers: element of landscape
- ► Geologists: soft rock, sediment
- ► Hydrologists: water reservoir
 - Climatologis
 - Physicists: thermome
- Mathematicians: free boundary.
- Electrical engineers: one side
- Electrical engineers. One student
- Glaciologists: part of the cryosp

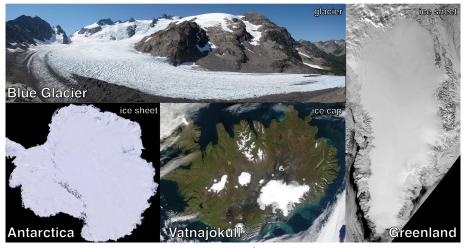
- Artists, Tourists: beautiful landscape
- Geographers: element of landscape
- ► Geologists: soft rock, sediment
- Hydrologists: water reservoir
- ► Climatologists: subsystem of climate system, climate archive
 - Physicists: thermome and the Unian fluid
- Mathematicians: free boundary gr
- Electrical engineers: one sided accessible dielectric
 - Glaciologists: part of the cryosphere


- Artists, Tourists: beautiful landscape
- Geographers: element of landscape
- Geologists: soft rock, sediment
- Hydrologists: water reservoir
- Climatologists: subsystem of climate system, climate archive
- Physicists: thermomechanical non-Newtonian fluid
- Mathematicians: free boundary
- Electrical engineers: one side
 - Glaciologists: part of the cryosphere

- Artists, Tourists: beautiful landscape
- Geographers: element of landscape
- Geologists: soft rock, sediment
- Hydrologists: water reservoir
- Climatologists: subsystem of climate system, climate archive
- Physicists: thermomechanical non-Newtonian fluid
- Mathematicians: free boundary problem in fluid dynamics
- Electrical engineers: one side
 - Glaciologists: part of the cryospher

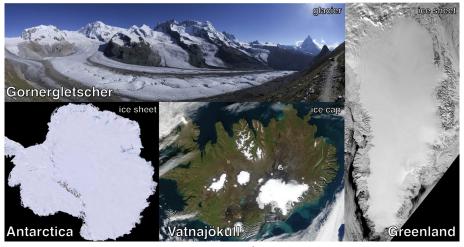
- Artists, Tourists: beautiful landscape
- Geographers: element of landscape
- Geologists: soft rock, sediment
- Hydrologists: water reservoir
- Climatologists: subsystem of climate system, climate archive
- Physicists: thermomechanical non-Newtonian fluid
- Mathematicians: free boundary problem in fluid dynamics
- Electrical engineers: one sided accessible dielectric
 - Glaciologists: part of the o

- Artists, Tourists: beautiful landscape
- Geographers: element of landscape
- Geologists: soft rock, sediment
- Hydrologists: water reservoir
- Climatologists: subsystem of climate system, climate archive
- Physicists: thermomechanical non-Newtonian fluid
- Mathematicians: free boundary problem in fluid dynamics
- Electrical engineers: one sided accessible dielectric
- ► Glaciologists: part of the cryosphere


The Cryosphere

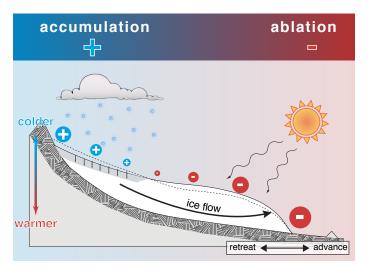
land ice $= \{ \text{ ice sheets, ice caps, glaciers} \}$

3


Land ice

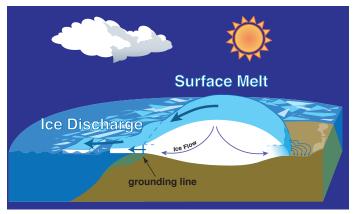
not to scale

4


Land ice

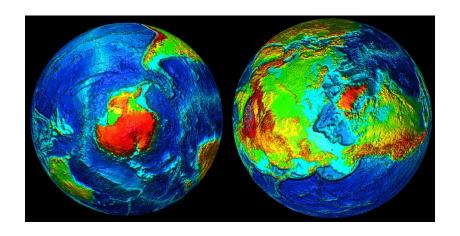
not to scale

ı,

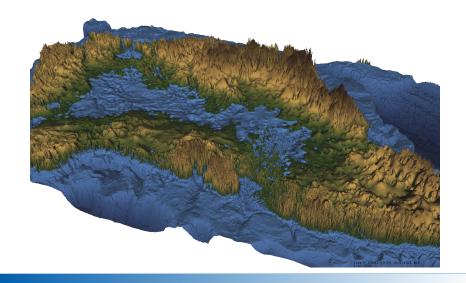

Glacier response to climate

lacktriangle glaciers can adjust to changes in climate \Rightarrow stable

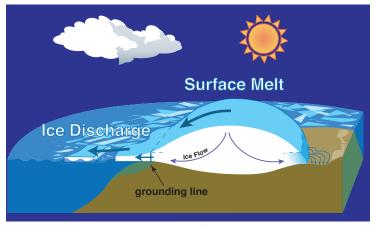
5


Ice sheet response to climate

modified from ICESat brochure

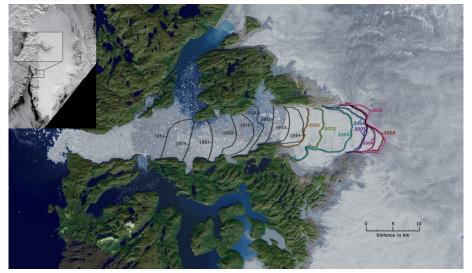

- ▶ ice discharge: vertically-averaged horizontal flow velocity × ice thickness
- ▶ 50/50 split for Greenland
- mostly ice discharge for Antarctica

Ice sheets really stick out



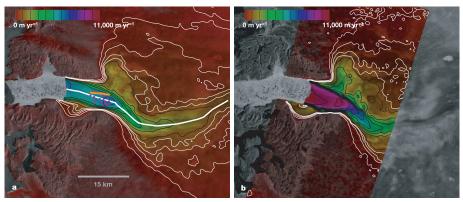
▶ ice sheets rise high enough to create their own weather

Build your own ice sheet

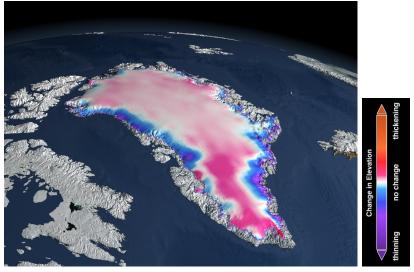

Ice sheet response to climate

modified from ICESat brochure

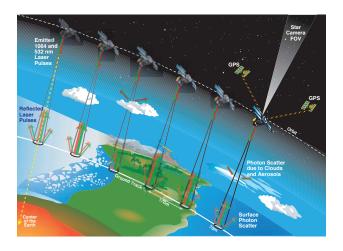
- surface processes are reasonably well understood
- ice discharge is the wildcard


Jakobshavn Isbræ, west Greenland

credit: NASA SVS and M. Fahnestock


Speed-up of Jakobshavn Isbræ mid 80's-2008

▶ more than doubled its flow speed between the mid-80's and 2008

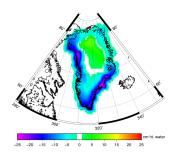

Joughin et al. (2004)

Elevation change between 2003 and 2006

NASA/Goddard Space Flight Center Scientific Visualization Studio

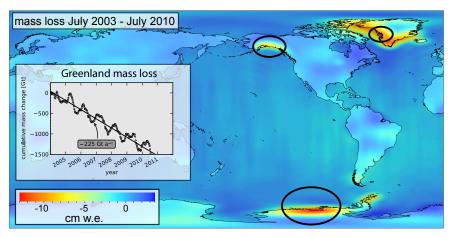
Ice Cloud Land Elevation Satellite (ICESat)


2003-2009

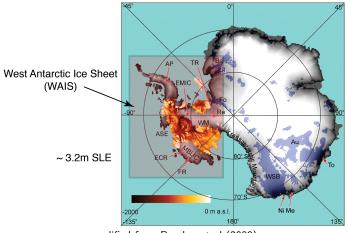


credit: NASA Goddard Space Flight Center

Gravity Recovery and Climate Experiment (GRACE)

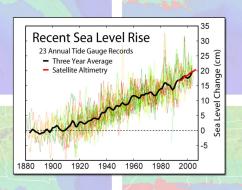


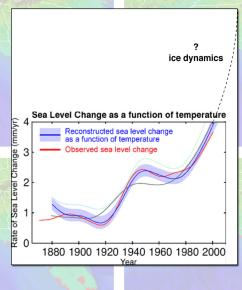
courtesy of A. Arendt


precise measurements of orbital variations of tandem satellites are used to construct time variable gravity field

Global mass changes observed by GRACE

credit: A. Arendt, S. Luthcke, modified

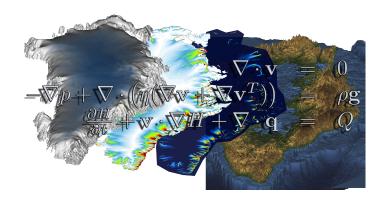

Antarctica


modified from Bamber et al (2009)

- WAIS is potentially unstable
- ightharpoonup could raise global mean sea level by $\sim\!3\,\mathrm{m}$

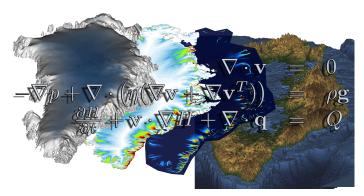
Why we care

Why we care

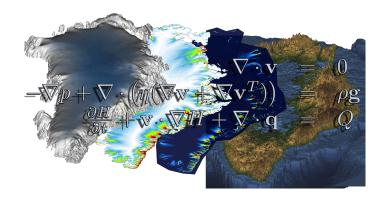


Why we need ice sheet models

"Realistic projections of ice sheet response to a changing climate should be based on a physical understanding of the processes involved, rather than trend extrapolation of historical observations" (Arthern & Hindmarsh, 2006)


What is an ice sheet model?

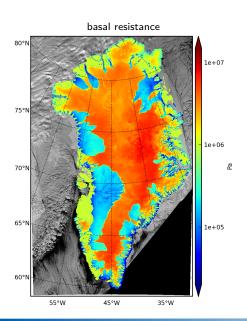
- ▶ ice dynamics
- ▶ thermodynamics
- surface processes


- boundary conditions
- hydrology
- ▶ ice-ocean interaction (e.g. calving)

Why ice sheet modeling is easy

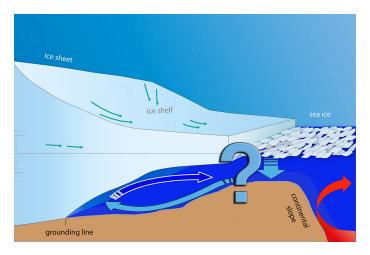
- composed of a single, largely homogenous material
- ▶ flow governed by the Stokes equations known since the mid-19th century
- flows slowly: we can ignore turbulence, Coriolis and other inertial effects

Why ice sheet modeling is so hard



Specifying the stress boundary condition at the

- seaward margin
- base


is challenging.

Challenge: ice base

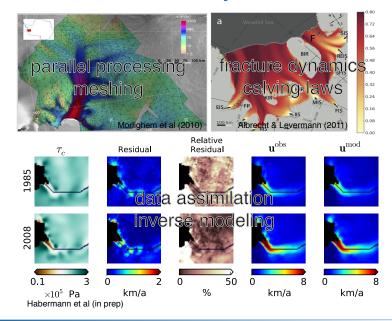
- stresses vary by orders of magnitude
- transience and complexity of basal water flow
- despite more than 5 decades of research, we only have crude parametrizations

Challenge: seaward margin

- ▶ ocean circulation ⇒ basal melt rates
- calving mechanism

IPCC and ice sheet models

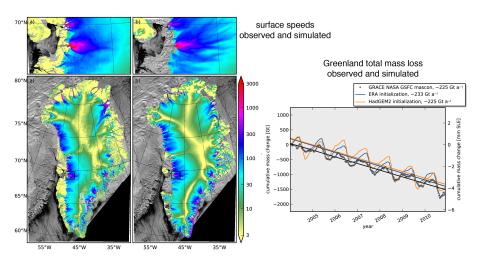
IPCC (2007), Box 4.1: Ice Sheet Dynamics and Stability

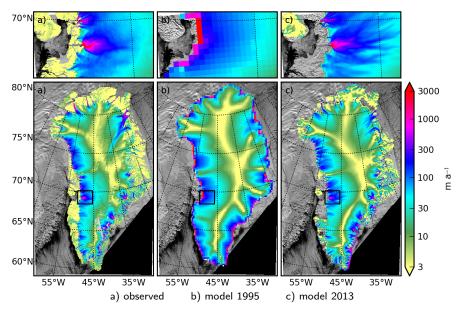

"... but recent changes in ice sheet margins and ice streams cannot be simulated accurately with these models,"

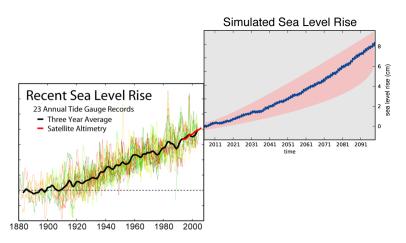
- the above statement received lots of attention
- ▶ triggered projects such as SeaRISE (Sea Level Response to Ice Sheet Evolution) and ice2sea

Ice Sheet Models, 2007-

Ice Sheet Models, 2007-today


A word of caution


- ▶ ice sheet models should not be used as a "black-box"
- require serious modeling choices (physics, physical and numerical parameters, etc) based on glaciological knowledge
- lacktriangle "garbage in \Rightarrow garbage out", sometimes "garbage in \Rightarrow gospel out"
- ▶ a model is only as good as the input data (at best)


Ice Sheet Models, 2007-today

Modeling in 1995 and today

Ready for the future?

- we now have decent numerical ice flow models
- but we need uncertainty quantification