An open ocean region in Neoproterozoic glaciations would have to be narrow to allow equatorial ice sheets

Published: Jan 1, 2014 by The PISM Authors

Title An open ocean region in Neoproterozoic glaciations would have to be narrow to allow equatorial ice sheets
Authors C. Rodehacke, A. Voigt, F. Ziemen, D. Abbot
Venue Geophysical Research Letters

A major goal of understanding Neoproterozoic glaciations and determining their effect on the evolution of life and Earth’s atmosphere is establishing whether and how much open ocean there was during them. Geological evidence tells us that continental ice sheets had to flow into the ocean near the equator during these glaciations. Here we drive the PISM ice sheet model with output from four simulations of the ECHAM5/MPI-OM atmosphere-ocean general circulation model with successively narrower open ocean regions. We find that extensive equatorial ice sheets form on marine margins if sea ice extends to within about 20 degrees latitude of the equator or less (Jormungand-like and hard Snowball states), but do not form if there is more open ocean than this. Given uncertainty in topographical reconstruction and ice sheet ablation parameterizations, we perform extensive sensitivity tests to confirm the robustness of our main conclusions.


Latest news

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod,, which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.

AWI PostDoc: Antarctic Ice Sheets in warming climates

Dr. Lohmann’s group at AWI is seeking a postdoc to work with PISM and the multi-scale Earth system model AWI-ESM. See