Complex Greenland outlet glacier flow captured

Published: Jun 1, 2016 by The PISM Authors

   
Title Complex Greenland outlet glacier flow captured
Authors A. Aschwanden, M. Fahnestock, and M. Truffer
Venue Nature Communications

The paper is based on PISM simulations of 600 m grid resolution over the entire Greenland ice sheet. All parts of the ice sheet, and each outlet glacier in particular, see the same physics. The quality of this flow model for 29 major outlet glaciers is assessed by comparison with present-day-observed surface velocities at cross-flow near-ocean profiles, often called “flux gates”. The main result is that the majority of the outlet glaciers show strong correlation between modeled and observed velocity. The paper demonstrates that outlet glacier flow can be captured with high fidelity if ice thickness is well-constrained and if vertical shearing as well as membrane stresses are included in the model. While it is not clear that solving the full-stress configuration would improve the fit, it is clear that the shallow hybrid model can be applied at higher resolution and for longer-duration runs. Inversion of surface properties for individual glaciers is not essential to reproduce the overall flow pattern. Spatial variability in flow can be explained in large part by the spatial variability in ice thickness.

Share

Latest news

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod, www.palmod.de), which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.

AWI PostDoc: Antarctic Ice Sheets in warming climates

Dr. Lohmann’s group at AWI is seeking a postdoc to work with PISM and the multi-scale Earth system model AWI-ESM. See