Assimilating the ICE-6G_C reconstruction of the latest Quaternary ice-age cycle into numerical simulations of the Laurentide and Fennoscandian ice-sheets

Published: Dec 1, 2017 by The PISM Authors

   
Title Assimilating the ICE-6G_C reconstruction of the latest Quaternary ice-age cycle into numerical simulations of the Laurentide and Fennoscandian ice-sheets
Authors G. Stuhne and W. Peltier
Venue J. Geophys. Res. Earth Surface

Reconstructions of the time-dependent geometry of ice sheets over the last ice-age cycle (100kyr) can draw from two categories of data. On one hand there are constraints from observations of GIA (glacial isostatic adjustment) and of eustatic sea-level through marine sediment stratigraphy. These are constraints on ice geometry but via temporal and/or spatial integration. On the other hand there is high temporal resolution, but geographically local, information in ice cores about climate over the same period. The former category informs the output (ice thickness and grounding line) of the ice sheet evolution equations while the later inform the input (source term). Like Stuhne & Peltier (2015), this paper connects the two categories using PISM. Because climate-record-driven applications of PISM, such as the SeaRISE project, already use well-posed simulations, a reconciliation of the two data categories is necessarily a temporal/spatial inversion. Here the goal is close fit to the GIA+eustatic-record-based ICE-6G_C ice thickness reconstruction from tuned (“nudged”) climate-input-driven PISM runs. These authors analyze the amount of surface mass balance correction, applied using hypothesized characteristic time scales, needed to reduce the error between PISM output and ICE-6G_C. An example of the usefulness of this methodology is in diagnosing the origin of Meltwater Pulse 1B (-11kyr). They suggest it is more likely to have been in North America than in Antarctica, its origin in the ICE-6G_C reconstruction.

Share

Latest news

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod, www.palmod.de), which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.

AWI PostDoc: Antarctic Ice Sheets in warming climates

Dr. Lohmann’s group at AWI is seeking a postdoc to work with PISM and the multi-scale Earth system model AWI-ESM. See