Century-scale evolution of the Jakobshavn Isbræ with a high resolution regional model

Published: Mar 1, 2012 by The PISM Authors

Title Century-scale evolution of the Jakobshavn Isbræ with a high resolution regional model
Authors Daniella DellaGiustina
Venue AGU Fall Meeting 2011
Location Greenland

A new regional mode in PISM is applied to the Jakobshavn outlet glacier. This mode is best suited for high spatial resolutions (< 1 km) and short timescales (< 1000 a). The first step is the identification of a drainage basin based on the surface gradient. Boundary conditions along the basin outline then partially-isolate the outlet glacier flow from the rest of the ice sheet. The ice dynamics model applied within the basin is the full enthalpy-based, SSA-sliding model. Both slow and fast ice flow are captured, as shown by a comparison to observations.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod, www.palmod.de), which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.