Kinematic first-order calving law implies potential for abrupt ice-shelf retreat

Published: May 1, 2012 by The PISM Authors

Title Kinematic first-order calving law implies potential for abrupt ice-shelf retreat
Authors Anders Levermann and others
Venue The Cryosphere
Location Antarctic ice shelves

Observed large-scale disintegration of Antarctic ice shelves has moved their fronts closer towards grounded ice, accelerating ice-sheet discharge and contributing to global sea-level rise. Here we describe the first-order large-scale kinematic contribution to calving which is consistent with large-scale observation. This calving law depends only on local ice properties which are, however, determined by the full topography of the ice shelf. Simulations in PISM-PIK using the parameterization reproduces multiple stable fronts as observed for the Larsen A and B Ice Shelves, including abrupt transitions between them. We also find multiple stable states of the Ross Ice Shelf.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod,, which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.