Kinematic first-order calving law implies potential for abrupt ice-shelf retreat

Published: May 1, 2012 by The PISM Authors

   
Title Kinematic first-order calving law implies potential for abrupt ice-shelf retreat
Authors Anders Levermann and others
Venue The Cryosphere
Location Antarctic ice shelves

Observed large-scale disintegration of Antarctic ice shelves has moved their fronts closer towards grounded ice, accelerating ice-sheet discharge and contributing to global sea-level rise. Here we describe the first-order large-scale kinematic contribution to calving which is consistent with large-scale observation. This calving law depends only on local ice properties which are, however, determined by the full topography of the ice shelf. Simulations in PISM-PIK using the parameterization reproduces multiple stable fronts as observed for the Larsen A and B Ice Shelves, including abrupt transitions between them. We also find multiple stable states of the Ross Ice Shelf.

Share

Latest news

PIK Potsdam: PostDoc positions in ice sheet and Earth system modelling

A two-year PostDoc positions in ice sheet and Earth system modelling is available in the Ice Dynamics group, as part of the new Earth Resilience Science Unit (ERSU), at the Potsdam Institute for Climate Impact Research (PIK).

U Copenhagen: 2 PhD positions in ice sheet modelling at the Niels Bohr Institute

Two PhD fellowship positions in ice sheet modelling are advertised at the Niels Bohr Institute, University of Copenhagen.

AWI Bremerhaven: PhD position Projections of future sea-level rise from coupled ice sheet-ocean modelling

The Alfred Wegener Institute, Bremerhaven, is offering a PhD position in the field of coupled ice sheet-ocean modelling. The core of the project is to run simulations with FESOM-PISM (a coupled ocean-ice shelf-ice sheet model with evolving cavity geometries) for different 21st-century climate projections to obtain well-constrained trajectories of future ice mass loss from the vast Antarctic Ice Sheet. Model results will feed into a fingerprinting method that considers the ocean response as well as gravitational effects and contributions from other sources. The final product will be a time series of global maps of regional sea-level variations that consider all of the most relevant processes.