Testing the sensitivity of the East Antarctic Ice Sheet to Southern Ocean dynamics: past changes and future implications

Published: Mar 1, 2015 by The PISM Authors

Title Testing the sensitivity of the East Antarctic Ice Sheet to Southern Ocean dynamics: past changes and future implications
Authors C. Fogwill, C. Turney, K. Meissner, N. Golledge, P. Spence, J. Roberts, M. England, R. Jones, and L. Carter
Venue Journal of Quaternary Science

The stability of the Antarctic ice sheet and its contribution to sea level under projected future warming remains highly uncertain. The Last Interglacial (LI; 135–116 ka ago) is a potential analogue for the present period, with sea levels 6.6–9.4 m higher than present, and thus it deserves study. This paper examines a possible source of LI sea-level rise. These authors report on model simulations exploring the effects of migrating Southern Hemisphere Westerlies (SHWs) on Southern Ocean circulation and Antarctic ice-sheet dynamics. The effect on ice dynamics is modeled with PISM, which plays only a supporting role in this work. They conclude that southerly shifts in winds may have significantly impacted the sub-polar gyres, inducing pervasive warming of 0.2–0.8 °C in the upper 1200 m adjacent to sectors of the East Antarctic Ice Sheet (EAIS). Thus the EAIS potentially made a substantial, hitherto unsuspected, contribution to LI sea levels.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod, www.palmod.de), which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.