PISM stable0.4 is released

Published: May 3, 2012 by The PISM Authors

PISM version stable0.4 is available. See the stable version page to check out a copy of the source code or download an Ubuntu package. Send email to help@pism-docs.org for help with any version of PISM.

Changes (compared to stable0.3) include

Model changes

  • Merging with PISM-PIK:
    • SIA and SSA ice velocities are hybridized using simpler technique (Winkelmann et al. 2011).
    • Mass continuity finite difference scheme is conserving (Winkelmann et al. 2011).
    • Mass fluxes at calving fronts are accounted by subgrid scheme (Albrechts et al. 2011).
    • Calving model based on principle strain rates (“eigencalving”; Winkelmann et al. 2011).
  • Improved enthalpy code (Aschwanden et al. 2011).
  • In stable0.3 and 0.2, stored basal water was diffused in the horizontal (Bueler & Brown, 2009). This regularization has been removed. Instead water is stored locally and drains at a fixed, configurable rate. Users/developers are encouraged to propose and implement alternative subglacial hydrology models.
  • Implemented the bed roughness parameterization for SIA described by (Schoof, 2003).
  • PDD code computes accumulation from precipitation and a temperature threshold.
  • Temperature, precipitation, surface mass balance lapse rate corrections can modify surface inputs.

Usability improvements/changes

  • PISM stable0.4 requires PETSc version 3.0 or 3.1. (Version 2.3.3 is not supported.)
  • New CMake-based build system.
  • Forcing by time- and space-dependent climate or surface boundary conditions: improved interface.
  • Simplified flow-line modeling using PISM. See Storglaciaren example in the User’s Manual (or see the Storglaciaren page for a preview).
  • On Debian and Ubuntu systems PISM can be installed from a .deb package. Download it here. This is no longer the case.
  • Building development version of PISM on Debian systems is easier with the help of a meta-package depending on all necessary tools and libraries; see dev version page.
  • Model state is backed-up every wall-clock hour to make it easier to re-start interrupted runs.
  • PDD code reports melt, accumulation and runoff.
  • Updated documentation, including User’s Manual, Installation Manual, and Source Code Browser.

Under the hood

  • Better software tests.
  • Less restrictive input file format means easier to create a PISM-readable NetCDF file.
  • Improved file output performance and choice of variable order.
  • Many structural improvements:
    • re-factored stress balance code
    • re-factored flow laws
    • well-defined climate forcing
    • well-defined “diagnostic” computations
    • isolated bedrock thermal layer model, with clear interface
  • More flexible climate forcing using scalar temperature offsets
  • Clearly-identified ice surface inputs will accept output from a snow/firn model.

Experimental features

  • Finite-element-based SSA solver.
    • Designed for use with inverse modeling codes that are not a part of this release.
  • Preliminary regional (outlet glacier) modeling support.
  • Mostly untested coupling to external energy balance/surface mass balance models.

Share

Latest news

PIK Potsdam: PostDoc positions in ice sheet and Earth system modelling

A two-year PostDoc positions in ice sheet and Earth system modelling is available in the Ice Dynamics group, as part of the new Earth Resilience Science Unit (ERSU), at the Potsdam Institute for Climate Impact Research (PIK).

U Copenhagen: 2 PhD positions in ice sheet modelling at the Niels Bohr Institute

Two PhD fellowship positions in ice sheet modelling are advertised at the Niels Bohr Institute, University of Copenhagen.

AWI Bremerhaven: PhD position Projections of future sea-level rise from coupled ice sheet-ocean modelling

The Alfred Wegener Institute, Bremerhaven, is offering a PhD position in the field of coupled ice sheet-ocean modelling. The core of the project is to run simulations with FESOM-PISM (a coupled ocean-ice shelf-ice sheet model with evolving cavity geometries) for different 21st-century climate projections to obtain well-constrained trajectories of future ice mass loss from the vast Antarctic Ice Sheet. Model results will feed into a fingerprinting method that considers the ocean response as well as gravitational effects and contributions from other sources. The final product will be a time series of global maps of regional sea-level variations that consider all of the most relevant processes.