Nothing to stop WAIS deglaciation after Amundsen Sea retreat?

Published: Nov 7, 2015 by The PISM Authors

A new paper in the Proceedings of the National Academy of Sciences by J. Feldmann and A. Levermann, of the Potsdam Institute for Climate Impact Research, uses PISM simulations to show that nearly-complete WAIS collapse is triggered by present-day melt rates in the Amundsen Sea. Modeled WAIS deglaciation follows after relatively-short (60–200a) periods in which the present-day sub-shelf (i.e. ocean-caused) melt rates are sustained.

The simulations use conservative assumptions about, and (necessarily) modeling of, the interaction of the ice sheet with the ocean and atmosphere. In particular, subshelf melt rates for the present ice shelf geometry are taken from Finite Element Sea Ice-Ocean Model (FESOM) results. These are then extended to the evolving cavity geometry by a diffusive algorithm into regions below sea level, but with a pressure adjustment using the ice shelf base elevation. This leads to melt rates further inland that are similar to corresponding present-day-cavity-geometry-induced melt rates.

In most other ways this application of PISM is as expected, though at high (5km) resolution and using a full suite of marine ice sheet submodels: 50ka spinup, SIA+SSA model with plastic till, subgrid motion of the calving front, ocean-water stress boundary condition at the calving front, the “eigen-calving” calving law, and an interpolated grounding line.

The results of the simulations are most easily understood by seeing what happens:

This work appeared today, 2 November 2015. It is already featured in commentaries at the Washington Post, The Guardian, and Bloomberg Business News. It is also featured in Nature journal’s “News explainer”, and in Science magazine’s “Latest News”.

The last of these includes this high-level view from two well-known students of the behavior of Amundsen Sea-sector glaciers:

“This paper does confirm what we hypothesized, that knocking out the Pine Island Glacier and Thwaites takes down the rest of the West Antarctic Ice Sheet,” says Ian Joughin, a glaciologist at the University of Washington, Seattle, who co-authored last year’s Science paper. He adds, however, that the model’s weakness is its [temporal] resolution; it shows the destabilization of the glaciers occurring roughly 60 years from now, whereas present observations suggest that collapse is already underway. As a result, Joughin says, the model’s time scale for the collapse is probably too long. “It’s more likely measured in centuries rather than millennia.”

Indeed, “the jury is still out” on whether Feldmann and Levermann’s study got the time scale right, [Eric] Rignot [of the University of California, Irvine] says. The long-term evolution of an ice sheet “is a very complex modeling problem. Some of the variables controlling the models are not all that well known,” he adds, including forces such as winds, ocean circulation, and how icebergs calve. “There is not a model out there that is getting it right, because they all have caveats. I think the discussion is ongoing, and is only going to be more interesting with time.”

Share

Latest news

PISM 2.1 is out

We are pleased to announce the release of PISM v2.1.

Congrats to Constantine

Dear PISM users and developers