Increased future ice discharge from Antarctica owing to higher snowfall

Published: Jan 1, 2013 by The PISM Authors

   
Title Increased future ice discharge from Antarctica owing to higher snowfall
Authors Ricarda Winkelmann and others
Venue Nature

Large uncertainties exist in the potential changes of dynamic ice discharge from Antarctica from precipitation. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on PISM-PIK runs forced by climate simulations through to the end of 2500, show that enhanced discharge exceeds the effect of surface warming as well as that of basal ice-shelf melting. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates for between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario.

Share

Latest news

PIK Potsdam: PostDoc positions in ice sheet and Earth system modelling

A two-year PostDoc positions in ice sheet and Earth system modelling is available in the Ice Dynamics group, as part of the new Earth Resilience Science Unit (ERSU), at the Potsdam Institute for Climate Impact Research (PIK).

U Copenhagen: 2 PhD positions in ice sheet modelling at the Niels Bohr Institute

Two PhD fellowship positions in ice sheet modelling are advertised at the Niels Bohr Institute, University of Copenhagen.

AWI Bremerhaven: PhD position Projections of future sea-level rise from coupled ice sheet-ocean modelling

The Alfred Wegener Institute, Bremerhaven, is offering a PhD position in the field of coupled ice sheet-ocean modelling. The core of the project is to run simulations with FESOM-PISM (a coupled ocean-ice shelf-ice sheet model with evolving cavity geometries) for different 21st-century climate projections to obtain well-constrained trajectories of future ice mass loss from the vast Antarctic Ice Sheet. Model results will feed into a fingerprinting method that considers the ocean response as well as gravitational effects and contributions from other sources. The final product will be a time series of global maps of regional sea-level variations that consider all of the most relevant processes.