LGM ice sheets simulated with a fully coupled ice sheet-climate model

Published: Feb 1, 2013 by The PISM Authors

Title LGM ice sheets simulated with a fully coupled ice sheet-climate model
Authors Florian Ziemen and others
Venue EGU 2012

We interactively couple the atmosphere-ocean-vegetation general circulation model ECHAM5/MPIOM/LPJ with the ice sheet model mPISM, a modified version of the Parallel Ice Sheet Model, without flux correction or anomaly maps in our models. We run ECHAM5 in T31 resolution and mPISM on a 20 km grid covering most of the northern hemisphere. For comparison, we also perform an experiment using the PMIP2 protocol and the ICE-5G ice sheet reconstruction (Peltier, 2004) instead of mPISM. In runs using pre-industrial as well as LGM boundary conditions, the shape of the ice sheets has a strong influence on the wind systems and thereby on the global climate. Our model shows ice sheet collapses as regular part of the ice sheet behavior. These pulses create strong signals in the ocean.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod, www.palmod.de), which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.