Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea-level (The SeaRISE Project)

Published: Mar 1, 2013 by The PISM Authors

Title Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea-level (The SeaRISE Project)
Authors Robert Bindschadler and 27 others
Venue Journal of Glaciology

Two versions of PISM were among the ten ice sheet models used to study sensitivity of the Greenland and Antarctic ice sheets to prescribed changes of surface mass balance, sub-ice-shelf melting and basal sliding. Results exhibit a large range in projected contributions to sea level change. In most cases, the sea-level-relevant ice volume lost is linearly dependent on the strength of the forcing. Combinations of forcings can be closely approximated by linearly summing the contributions from single forcing experiments suggesting that non-linear feedbacks are modest. Our models indicate that Greenland is more sensitive than Antarctica to likely atmospheric changes in temperature and precipitation, while Antarctica is most sensitive to increased ice-shelf basal melting. An experiment approximating the IPCC’s RCP8.5 scenario produces first century contributions to sea level of 22.3 and 8.1 cm from Greenland and Antarctica, respectively, with a range among models of 62 and 14 cm, respectively. By 200 years, projections increase to 53.2 and 26.7 cm, respectively, with ranges of 79 and 43 cm.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod,, which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.