Are the simulated climatic and dynamic mass losses of the Greenland Ice Sheet decoupled during the next 100 years?

Published: Apr 1, 2013 by The PISM Authors

Title Are the simulated climatic and dynamic mass losses of the Greenland Ice Sheet decoupled during the next 100 years?
Authors Guðfinna Aðalgeirsdóttir and Andy Aschwanden
Venue EGU 2013

Model simulations with the state-of-the-art ice sheet model PISM (Parallel Ice Sheet Model), that is forced with a number of climate forcings for the next century are presented. The climate forcings come from the EU FP7 project ice2sea where 3 regional climate models (HIRHAM5, MAR and HadRM3P) were used to dynamically downscale two scenario runs (A1B and E1) from two GCMs (ECHAM5 and HadCM3). These climate models are run with a constant ice sheet topography and therefore climate-elevation change feedback not included in the simulated mass changes. To assess the sensitivity of the projections to the ice sheet model initial state, four initialisaton methods were used. Analyses of these 100 years simulations indicate that the mass changes due to climate forcing are decoupled from the changes due to dynamic response and the initialisation procedure. The simulated mass loss has a relatively large range, 0.5 to 6.5 cm sea level rise equivalent, which is to a large extent due to the range in the projected climate forcing from the regional climate models that were used to downscale the climate fields.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod,, which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.