Hindcasting to measure ice sheet model sensitivity

Published: Aug 1, 2013 by The PISM Authors

Title Hindcasting to measure ice sheet model sensitivity
Authors A. Aschwanden, G. Aðalgeirsdóttir, and C. Khroulev
Venue The Cryosphere

Validation and assessment of model performance is critical, but it is notoriously-challenging in ice sheet modeling. This paper couples PISM to the HIRHAM5 regional climate model for simulations of the Greenland ice sheet. The results are compared to observations in the 1989-2011 period (hindcasting), in which ice geometry, ice surface velocity, gravitationally-derived mass time-series, and surface elevation change observations are all available. The simulations reproduce the seasonal signal and decadal trends in mass loss but they show deficiencies compared to observed changes in ice discharge. The paper concludes that it is important to use //multiple// data sets for model validation, and it identifies rates of change of spatially-dense observations as preferred validation metrics.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod, www.palmod.de), which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.