An iterative inverse method to estimate basal topography and initialize ice flow models

Published: Nov 1, 2013 by The PISM Authors

Title An iterative inverse method to estimate basal topography and initialize ice flow models
Authors W. van Pelt and others
Venue The Cryosphere

A new inverse approach to reconstruct distributed bedrock topography and simultaneously initialize an ice flow model is proposed. The procedure runs PISM multiple times over a prescribed period, while being forced with space- and time-dependent climate input. After each iteration bed heights are adjusted using information of the remaining misfit between observed and modeled surface topography. Synthetic experiments with constant-climate forcing demonstrate convergence and robustness of the approach. Application to Nordenskiöldbreen, Svalbard, forced with height- and time-dependent climate input since 1300 AD show a high correlation against radar-observed thicknesses. Remaining uncertainties can be ascribed to inaccurate model physics, in particular, uncertainty in the description of sliding.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod,, which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.