Paleo-glaciations of the Shaluli Shan, southeastern Tibetan Plateau

Published: Apr 1, 2014 by The PISM Authors

Title Paleo-glaciations of the Shaluli Shan, southeastern Tibetan Plateau
Authors Fu, P. and 7 others
Venue EGU Annual Meeting, Vienna, Austria, April 07-12, 2013

Geomorphological mapping, 10Be and 26Al exposure dating and glacial modeling are used to reconstruct the glacial history of the Shaluli Shan, southeastern Tibetan Plateau, and to understand the evolution of the glacial landscape. The Haizishan Plateau experienced multiple ice cap glaciations, and 10Be and 26Al exposure ages from bedrock, boulder and saprolite profile samples show limited glacial erosion on some parts of the plateau surface and more than 2 meters of bedrock erosion in other areas. This juxtaposition of high erosion and relict topography suggests that the paleo Haizishan ice cap had a complex basal thermal regime. A numerical glacier model (PISM) is now being used to investigate the thermal regime of the paleo ice cap and patterns of erosion potential. This work provides new insights into the paleoclimatic setting and glacial landscape evolution of the southeast Tibetan Plateau.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod,, which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.