Paleo-glaciations of the Shaluli Shan, southeastern Tibetan Plateau

Published: Apr 1, 2014 by The PISM Authors

   
Title Paleo-glaciations of the Shaluli Shan, southeastern Tibetan Plateau
Authors Fu, P. and 7 others
Venue EGU Annual Meeting, Vienna, Austria, April 07-12, 2013

Geomorphological mapping, 10Be and 26Al exposure dating and glacial modeling are used to reconstruct the glacial history of the Shaluli Shan, southeastern Tibetan Plateau, and to understand the evolution of the glacial landscape. The Haizishan Plateau experienced multiple ice cap glaciations, and 10Be and 26Al exposure ages from bedrock, boulder and saprolite profile samples show limited glacial erosion on some parts of the plateau surface and more than 2 meters of bedrock erosion in other areas. This juxtaposition of high erosion and relict topography suggests that the paleo Haizishan ice cap had a complex basal thermal regime. A numerical glacier model (PISM) is now being used to investigate the thermal regime of the paleo ice cap and patterns of erosion potential. This work provides new insights into the paleoclimatic setting and glacial landscape evolution of the southeast Tibetan Plateau.

Share

Latest news

PIK Potsdam: PostDoc positions in ice sheet and Earth system modelling

A two-year PostDoc positions in ice sheet and Earth system modelling is available in the Ice Dynamics group, as part of the new Earth Resilience Science Unit (ERSU), at the Potsdam Institute for Climate Impact Research (PIK).

U Copenhagen: 2 PhD positions in ice sheet modelling at the Niels Bohr Institute

Two PhD fellowship positions in ice sheet modelling are advertised at the Niels Bohr Institute, University of Copenhagen.

AWI Bremerhaven: PhD position Projections of future sea-level rise from coupled ice sheet-ocean modelling

The Alfred Wegener Institute, Bremerhaven, is offering a PhD position in the field of coupled ice sheet-ocean modelling. The core of the project is to run simulations with FESOM-PISM (a coupled ocean-ice shelf-ice sheet model with evolving cavity geometries) for different 21st-century climate projections to obtain well-constrained trajectories of future ice mass loss from the vast Antarctic Ice Sheet. Model results will feed into a fingerprinting method that considers the ocean response as well as gravitational effects and contributions from other sources. The final product will be a time series of global maps of regional sea-level variations that consider all of the most relevant processes.