Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet

Published: Sep 1, 2015 by The PISM Authors

   
Title Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet
Authors R. Winkelmann and others
Venue Science Advances

Ice sheet scientists have probably asked each other, over a beer or otherwise, how much of the Antarctic Ice Sheet would melt if all fossil fuels were burned up until they were gone. Co-author Ken Caldeira of this paper said in an interview that “I’ve been wondering about this question for 35 years but was never able to address it.” These authors think that ice sheet science has gotten sophisticated enough to take this question seriously. Their PISM-based answer is that serious destruction of the ice sheet occurs in the first millenium, at about 3 m sea level rise per century. Actually, PISM is at the end of a chain of models: emission scenarios, CO2 concentrations, and global mean temperature pathways are first combined in an Earth system model (GENIE) and then downscaled to surface and ocean temperature anomalies for Antarctica using scaling factors also from Earth system modeling (ECHAM5/MPIOM). These regional warming scenarios are then used to force PISM. In particular, PISM’s positive-degree-day scheme models surface melt and a three-equation model (BRIOS model; Timmerman et al. 2002) describes subshelf melting. Losses come from a combination of marine-ice-sheet instability and surface elevation versus mass balance feedback. However, in the first century the simulations show the same relatively-modest AIS mass changes as seen in other recent (e.g. IPCC AR5) modeling work, because dynamic losses driven by increasing ocean temperatures are partly offset by increasing snowfall.

Share

Latest news

PIK Potsdam: PostDoc positions in ice sheet and Earth system modelling

A two-year PostDoc positions in ice sheet and Earth system modelling is available in the Ice Dynamics group, as part of the new Earth Resilience Science Unit (ERSU), at the Potsdam Institute for Climate Impact Research (PIK).

U Copenhagen: 2 PhD positions in ice sheet modelling at the Niels Bohr Institute

Two PhD fellowship positions in ice sheet modelling are advertised at the Niels Bohr Institute, University of Copenhagen.

AWI Bremerhaven: PhD position Projections of future sea-level rise from coupled ice sheet-ocean modelling

The Alfred Wegener Institute, Bremerhaven, is offering a PhD position in the field of coupled ice sheet-ocean modelling. The core of the project is to run simulations with FESOM-PISM (a coupled ocean-ice shelf-ice sheet model with evolving cavity geometries) for different 21st-century climate projections to obtain well-constrained trajectories of future ice mass loss from the vast Antarctic Ice Sheet. Model results will feed into a fingerprinting method that considers the ocean response as well as gravitational effects and contributions from other sources. The final product will be a time series of global maps of regional sea-level variations that consider all of the most relevant processes.