List of publications using PISM

Photo: NRKbeta / Unsplash

The list below is generated by processing submitted.bib.


  1. J. Contzen, T. Dickhaus, and G. Lohmann. Long-term temporal evolution of extreme temperature in a warming earth. arxiv preprint, 2022. URL:
  2. A. Løkkegaard, K. Mankoff, C. Zdanowicz, G. D. Clow, M. P. Lüthi, S. Doyle, H. Thomsen, D. Fisher, J. Harper, A. Aschwanden, B. M. Vinther, D. Dahl-Jensen, H. Zekollari, T. Meierbachtol, I. McDowell, N. Humphrey, A. Solgaard, N. B. Karlsson, S. A. Khan, B. Hills, R. Law, B. Hubbard, P. Christoffersen, M. Jacquemart, R. S. Fausto, and W. T. Colgan. Greenland and canadian arctic ice temperature profiles. The Cryosphere Discussions, 2022:1–24, 2022. URL:, doi:10.5194/tc-2022-138.
  3. R. Reese, J. Garbe, E. A. Hill, B. Urruty, K. A. Naughten, O. Gagliardini, G. Durand, F. Gillet-Chaulet, D. Chandler, P. M. Langebroek, and R. Winkelmann. The stability of present-day Antarctic grounding lines – Part B: Possible commitment of regional collapse under current climate. The Cryosphere Discussions, 2022:1–33, 2022. URL:, doi:10.5194/tc-2022-105.
  4. B. Urruty, E. A. Hill, R. Reese, J. Garbe, O. Gagliardini, G. Durand, F. Gillet-Chaulet, G. H. Gudmundsson, R. Winkelmann, M. Chekki, D. Chandler, and P. M. Langebroek. The stability of present-day Antarctic grounding lines – Part A: No indication of marine ice sheet instability in the current geometry. The Cryosphere Discussions, 2022:1–34, 2022. URL:, doi:10.5194/tc-2022-104.


  1. C. Yue, L. S. Schmidt, L. Zhao, M. Wolovick, and J. C. Moore. Insensitivity of mass loss of icelandic vatnajökull ice cap to solar geoengineering. The Cryosphere Discussions, 2021:1–20, 2021. URL:, doi:10.5194/tc-2021-318.
  2. M. Zeitz, R. Winkelmann, and A. Levermann. Implications of flow law uncertainty for flow-driven ice-loss in greenland under idealized warming pathways. The Cryosphere Discussions, 2021. URL:


  1. P. Gierz, L. Ackermann, C. B. Rodehacke, U. Krebs-Kanzow, C. Stepanek, D. Barbi, and G. Lohmann. Simulating interactive ice sheets in the multi-resolution awi-esm 1.2: a case study using scope 1.0. Geoscientific Model Development Discussions, 2020:1–32, 2020. URL:, doi:10.5194/gmd-2020-159.
  2. Z. Zhang, Q. Yan, R. Zhang, F. Colleoni, G. Ramstein, G. Dai, M. Jakobsson, M. O’Regan, S. Liess, D.-D. Rousseau, N. Wu, E. J. Farmer, C. Contoux, C. Guo, N. Tan, and Z. Guo. Rapid waxing and waning of beringian ice sheet reconcile glacial climate records from around north pacific. Climate of the Past Discussions, 2020:1–25, 2020. URL:, doi:10.5194/cp-2020-38.


  1. A. Winter, T. Kleiner, D. Steinhage, T. Creyts, and O. Eisen. Deducing large-scale age distribution and paleoaccumulation rates from radiostratigraphy in east antarctica. 2018. URL:


  1. M. A. Martin, A. Levermann, and R. Winkelmann. Comparing ice discharge through west antarctic gateways: weddell vs. amundsen sea warming. The Cryosphere Discussions, 9(2):1705–1733, 2015. URL:


  1. R. Winkelmann, A. Levermann, K. Frieler, and M. A. Martin. Uncertainty in future solid ice discharge from antarctica. The Cryosphere Discussions, 6(1):673–714, 2012. URL:


  1. Ed Bueler, Constantine Khroulev, Andy Aschwanden, Ian Joughin, and Ben E. Smith. Modeled and observed fast flow in the Greenland ice sheet. 2009. URL:

Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.