Reconstruction of basal properties in ice sheets using iterative inverse methods

Published: Sep 1, 2012 by The PISM Authors

Title Reconstruction of basal properties in ice sheets using iterative inverse methods
Authors Marijke Habermannand others
Venue Journal of Glaciology

Inverse methods are used to estimate model parameters from observations, here basal shear stress from the surface velocity of an ice sheet. One starts with an initial estimate of the model parameters and then updates them to improve the match to observations in an iterative process. Large-scale spatial features are adjusted first. A stopping criterion prevents the overfitting of data. In this paper, iterative inverse methods are applied to the shallow-shelf approximation forward model. A new incomplete Gauss–Newton method is introduced and compared to the steepest descent and nonlinear conjugate gradient methods. Two different stopping criteria, the discrepancy principle and a recent-improvement threshold, are compared. The IGN method shows faster convergence than the others. Though PISM is not mentioned by this paper, and the experiments were done in python, code supporting these inversion methods is already present in the PISM dev branch.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod,, which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.