Last Glacial Maximum climate in New Zealand inferred from a modelled Southern Alps icefield

Published: Aug 1, 2012 by The PISM Authors

Title Last Glacial Maximum climate in New Zealand inferred from a modelled Southern Alps icefield
Authors Nick Golledge and others
Venue Quaternary Science Reviews
Location New Zealand (paleo)

In an attempt to constrain the climate of the Last Glacial Maximum period (LGM, c. 30–20 ka before present), a simulation of the New Zealand Southern Alps icefield is presented. PISM is applied at 500 m-resolution using empirical glaciological, climatological and geological data specific to the model domain, the entire icefield. An LGM cooling of at least 6–6.5 °C is necessary to bring about valley glaciers that extend beyond the mountains. However, climate–topography thresholds related to the elevation and hypsometry of individual catchments control the gradient of the rate of glacier expansion in the domain. In order to remain within geologically-reconstructed LGM limits we find that the LGM cooling was most likely associated with a precipitation regime up to 25% drier than today.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod,, which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.