Linear response functions to project contributions to future sea level

Published: Oct 1, 2012 by The PISM Authors

Title Linear response functions to project contributions to future sea level
Authors Ricarda Winkelmann and A. Levermann
Venue Climate Dynamics

Linear response functions can separately estimate the sea-level contributions of thermal expansion and solid ice discharge from Greenland and Antarctica. This formalism introduces a time-dependence which allows for future rates of sea-level rise to be influenced by past climate variations. The linear response function for the solid ice discharge is computed with the Potsdam Parallel Ice Sheet Model PISM-PIK (Winkelmann et al. 2011) under surface warming scenarios. Different from earlier studies we conclude that solid ice discharge from Greenland due to dynamic thinning is bounded by 0.42 m sea-level equivalent. Ice discharge induced by surface warming on Antarctica is best captured by a model which reflects the fact that ice loss increases with the cumulative amount of heat available for softening the ice in our model.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod,, which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.