The effect of climate forcing on numerical simulations of the Cordilleran ice sheet at the Last Glacial Maximum

Published: Jul 1, 2014 by The PISM Authors

Title The effect of climate forcing on numerical simulations of the Cordilleran ice sheet at the Last Glacial Maximum
Authors J. Seguinot, C. Khroulev, I. Rogozhina, A. P. Stroeven, and Q. Zhang
Venue The Cryosphere

An ensemble of numerical simulations of the Cordilleran ice sheet in western North America during the Last Glacial Maximum (LGM) using the Parallel Ice Sheet Model. Temperature offsets to the present-day climatologies are applied from five different data sets. Surface mass balance is computed from precipitation and temperature using a positive degree-day model. We assess the model against a geomorphological reconstruction of the ice margin at the LGM. Modelled ice sheet outlines and volumes appear highly sensitive to the choice of climate forcing. For three of the four reanalysis data sets used, differences in precipitation are the major source for discrepancies between model results. Part of the mismatch is due to unresolved orographic precipitation effects caused by the coarse resolution of reanalysis data.


Latest news

PISM 2.0 is out

PISM developers have been hard at work to bring you a brand new version of PISM, packed with new features. After years of development, PISM finally includes a Blatter solver, warranting a new major version: PISM 2.0.

Version 1.2

We are pleased to announce the release of the Parallel Ice Sheet Model (PISM) v1.2.

MPI-M Hamburg, Germany: open postdoc for coupled atmosphere-ocean-ice sheet model

The Max Planck Institute for Meteorology (MPI-M) contributes to the BMBF project “From the Last Interglacial to the Anthropocene: Modeling a Complete Glacial Cycle” (PalMod,, which aims at simulating the climate from the peak of the last interglacial up to the present using comprehensive Earth System Models. Phase II of this project has an open position Postdoctoral Scientist (W073). The successful candidate will be part of a local team performing and analysing long-term transient simulations covering the last glacial and the transition into the Holocene with an interactively coupled atmosphere-ocean-ice sheet model. Additionally, the candidate will contribute to the continued development of this model. The model system consists of the MPI-Earth system model, the ice sheet model PISM, and the solid-earth model VILMA.